Volumes of Revolution

Consider the line $y=3 x$

- Now rotate the line 360° about the x axis

As you can see the result is a solid cone. The volume of the cone can be thought of as a series of discs or cyl. ${ }^{\prime}$ ders.

Volume of a cylinder

- The volume of a cylinder is the area of the circular cross-section multiplied by the height.
- The area of a circle is πr^{2}
- The height is h
- So $V=\pi r^{2} h$
- We can think of a disc
as a very thin cylinder

Consider a small disc in the cone

- The volume of the disc is the area of the circular cross-section multiplied by the height (or length in our case).
- Now the radius of the circular cross-section is y and the length of the disc is δx.
- So $V=\pi y^{2} \delta x$

Integration as a process of summation

- We have seen that integration is a process of summation that adds a series of very small strips to give an area.
- This process can also be used to add a series of very small discs.
- As with areas, as $\delta x \rightarrow 0$, the limit of the sum gives the result that the volume of revolution about the x axis is given by

$$
\int \pi y^{2} d x=\pi \int y^{2} d x
$$

Volumes of revolution example

- As with area, vertical boundaries can be added in the form of limits:

$$
\text { volume }=\int_{a}^{b} \pi y^{d} d x
$$

Example:
The graph of $y=x^{d}$ between $x=1$ and $x=3$ is rotated completely around the x-axis. Find the volume generated.

$$
\begin{aligned}
\text { volume } & =\int_{1}^{3} \pi x^{4} d x \\
& =\left[\frac{\pi x^{5}}{5}\right]_{1}^{3} \\
& =\frac{243 \pi}{5} \frac{\pi}{5} \\
& =48.4 \pi
\end{aligned}
$$

General formula

- So the Volume of Revolution between the limits of $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ about the x axis can be found with

$$
\pi \int_{a}^{b} y^{2} d x
$$

- Similarly, the Volume of Revuluulir weiween the limits of $y=a$ and $y=b$ about the y axis can be found with

$$
\pi \int_{a}^{b} x^{2} d y
$$

Example 1

- Find the volume generated when the area defined by the following inequality is rotated completely about the x axis:

$$
0 \leq y \leq x(4-x)
$$

Example 1 Solution

- So our four boundary equations are:
- x-axis

$$
y=0
$$

- curve

$$
y=x(x-4)
$$

- x-axis intercept $\quad x=0$
- x-axis intercept $x=4$

Example 1 Solution

- Hence the volume of revolution is:
$\pi \int_{0}^{4} x^{2}(x-4)^{2} d x=\pi \int_{0}^{4} x^{4}-8 x^{3}+16 x^{2} d x$
$=\pi\left[\frac{x^{5}}{5}-2 x^{4}+\frac{16 x^{3}}{3}\right]_{0}^{4}$
$=\pi\left[\frac{4^{5}}{5}-2(4)^{4}+\frac{16(4)^{3}}{3}\right]=\frac{512}{15} \pi$

Example 2

- Find the volume generated when the area defined by the following inequalities is rotated completely about the y axis:

$$
\begin{aligned}
& y \geq x^{2}+1, \\
& x \geq 0 \\
& y \leq 2
\end{aligned}
$$

Example 2 Solution

- So our four boundary equations are:
- y-axis

$$
x=0
$$

- curve

$$
y=x^{2}+1
$$

- y-axis intercept

$$
y=1
$$

- line

$$
y=2
$$

- Since we are integrating wrt y we need the equation of the curve in terms of x^{2}.

Example 2 Solution

- So, If $y=x^{2}+1$

$$
\text { Then } \quad x^{2}=y-1
$$

- Hence the volume of revolution is:

$$
\begin{aligned}
& \pi \int_{1}^{2} y-1 d y==\pi\left[\frac{y^{2}}{2}-y\right]_{1}^{2} \\
& =\pi\left[\left(\frac{2^{2}}{2}-2\right)-\left(\frac{1^{2}}{2}-1\right)\right]=\frac{1}{2} \pi
\end{aligned}
$$

