3. ЗАКОНОМЕРНОСТИ ПЕРЕНОСА НОСИТЕЛЕЙ ЗАРЯДА В НИЗКОРАЗМЕРНЫХ СТРУКТУРАХ И ПРИБОРЫ НА ИХ ОСНОВЕ

3.1.	Транспорт носителей заряда вдоль потенциальных барьеров	3.1.1. Интерференция электронных волн
		3.1.2. Вольт-амперные характеристики низкоразмерных структур
		3.1.3. Квантовый эффект Холла
		3.1.4. Электронные приборы на интерференционном и баллистическом эффектах
3.2.	Транспорт носителей заряда через потенциальные барьеры	3.2.1. Одноэлектронное туннелирование и электронные приборы на этом эффекте
		3.2.2. Резонансное туннелирование и электронные приборы на этом эффекте
3.3.	Спинтроника	3.3.1. Гигантское магнитосопротивление
		3.3.2. Спин-контролируемое туннелирование
		3.3.3. Управление спинами электронов в полупроводниках
		3.3.4. Эффект Кондо
		3.3.5. Электронные приборы на спиновых эффектах

3.1. Транспорт носителей заряда вдоль потенциальных барьеров

3.1.1. Интерференция электронных волн

Фазовая интерференция (phase interference of electron waves)

$$\psi_1 = A_1 \exp(i\varphi_1) \qquad \psi_2 = A_2 \exp(i\varphi_2)$$
$$W = |\psi_1 + \psi_2|^2 = A_1^2 + A_2^2 + 2A_1^* A_2 \cos(\varphi_1 - \varphi_2)$$

Эффект Ааронова-Бома (Aharonov-Bohm effect)

$$\varDelta arphi = 2\pi (\Phi / \Phi_0)$$

 $\Phi_0 = h/e$ – the quantum of the magnetic

http://www.physics.gatech.edu/davidovic/nano0_files/image002.jpg

flux

1 In

Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory, *Phys. Rev.* **115**(3), 485-491 (1959).

Экспериментальное наблюдение эффекта Ааронова-Бома

Үниверсальная флуктуация проводимости (universal conductance fluctuations)

$$<\Delta\sigma^2 > \sim e^2/h$$

3.1.2. Вольт-амперные характеристики низкоразмерных структур Формализм Ландауэра-Бютикера (Landauer-Büttiker formalism)

R. Landauer, Spatial variation of currents and fields due to localized scatters in metallic conduction, *IBM J. Res. Dev.* **1**(6), 223-231 (1957); M. Büttiker, Four-terminal phase-coherent conductance, *Phys. Rev. Lett.* **57**(14), 1761-1764 (1986).

Am

Отрицательное сопротивление изгиба (negative bend resistance)

Эффект Холла (Hall effect)

Am

3.1.3. Квантовый эффект Холла (quantum Hall effect)

$$R_H = h/(ie^2)$$

i = 1, 2, 3, ...integer quantum Hall effect

i = p/q p = 1, 2, ..., q = 3, 5, 7, ...fractional quantum Hall effect

Hall resistance ρ_{xy} and longitudinal resistance ρ_{xx} of 2DEG at 80 K (by R. L. Willett)

Объяснение квантового эффекта Холла

From the History of the Quantum Hall Effect

Klaus von Klitzing (1943) Max-Planck-Institut für Festkörperforschung Stuttgart, Germany

The Nobel Prize in Physics, 1985

for the discovery of the quantized Hall effect

K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, *Phys. Rev. Lett.* **45**(6), 494-497 (1980) – **the integer quantum Hall effect**

From the History of the Quantum Hall Effect

Robert B. Laughlin (1950) Stanford University Stanford, CA, USA

Horst L. Störmer

(1943) Columbia University New York, NY, USA

Daniel C. Tsui (1939) Princeton University Princeton, NJ, USA

The Nobel Prize in Physics, 1998 for their discovery of a new form of quantum fluid with fractionally charged excitations

D. C. Tsui, H. L. Störmer, A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, *Phys. Rev. Lett.* **48**(22), 1559-1562 (1982) and R. B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations, *Phys. Rev. Lett.* **50**(18), 1395-1398 (1983) – **the fractional quantum Hall effect**

3.1.4. Электронные приборы на интерференционном и баллистическом эффектах Квантовый интерференционный транзистор (quantum interference transistor)

Am

Молекулярный квантовый интерференционный транзистор

D. M. Cardamone, C. A. Stafford, S. Mazumdar, Controlling quantum transport through a single molecule, *NanoLett.* **6**(11) 2422-2426 (2006); C. A. Stafford, D. M. Cardamone, S. Mazumdar, Quantum interference effect transistor (QUIET), *United States Patent Application* 2007/0215861 (09/20/2007).

Am

Баллистический выпрямитель (ballistic rectifier) Ба

A.M.Song, A.Lorke, A.Kriele, J.P.Kotthaus, Nonlinear electron transport in an asymmetric Microjunction: a ballistic rectifier, *Phys. Rev. Lett.* **80**(17) 3831-3834

Баллистический транзистор (ballistic deflection transistor)

Q.Diduck, M.Margala, M.J.Feldman, A terahertz transistor based on geometrical deflection of ballistic current, *Microwave Symposium Digest* (IEEE MTT-S International, 2006), pp. 345-347.

Q.Diduck, M.Margala, Ballistic deflection transistor and logic circuits based on same, *US Patent* 7 576 353 B2 (Published August 18,

3.2. Транспорт носителей заряда через потенциальные барьеры 3.2.1.Одноэлектронное туннелирование и электронные приборы на этом эффекте

single electron tunneling

First theory:

K. K. Likharev, A. B. Zorin, Theory of Bloch-wave oscillations in small Josephson junctions, *J. Low Temp. Phys.* 59(3/4), 347-382 (1985)
D. V. Averin, K. K. Likharev, Coulomb blockade of tunneling and coherent oscillations in small tunnel junctions, *J. Low. Temp. Phys.* 62(2), 345-372 (1986)

First experiment:

T. A. Fulton, G. J. Dolan, Observation of single-electron charging effects in small tunneling junctions, *Phys. Rev. Lett.* **59**(1), 109-112 (1987)

Однобарьерная структура (single barrier structure)

$$I \qquad R_{t} = \partial I / \partial V$$

$$-e/2C \qquad e/2C \qquad V$$

$$C = C_t + C_e$$

$$\varDelta E = e^2/2C - eV$$

 $e^2/2C$ - Coulomb gap

$$\Delta E \leq 0 \qquad f = I/e$$

$$|V_t| = e/2C \qquad k_B T << e^2/2C \qquad R_t > h/e^2$$

Двухбарьерная структура (double barrier structure)

Одноэлектронный транзистор (single-electron transistor

Характеристики одноэлектронного транзистора

Одноэлектронный Ті транзистор

K.Matsumoto, M.Ishii, K.Segawa, Y.Oka, B.J.Vartanian, J.S.Harris, Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system, *Appl. Phys. DLett.* **68** (1), 34-36 (1996).

Am

Одноэлектронная ловушка (single-electron trap)

Одноэлектронная ячейка динамической памяти (single-electron dynamic memory cell)

Одноэлектронный турникет (single-electron turnstile)

Одноэлектронный генератор накачки (single-electron generator)

Логические элементы (logic elements)

3.2.2. Резонансное туннелирование и электронные приборы на этом эффекте

(resonant tunneling)

$$J = \frac{e}{4\pi^{3}\mathbb{Z}} \int_{0}^{\infty} dk_{x} dk_{y} \int_{0}^{\infty} dk_{z} T(E_{z}) [f(E) - f(E')] (\frac{\partial E}{\partial k_{z}})$$

E' = E + eV

Резонансно-туннельный диод (resonant tunneling diode)

The Nobel Prize in Physics, 1973 for his experimental discoveries regarding tunneling phenomena in semiconductors

L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, *IBM J. Res. Dev.* **14**(1), 61-65 (1970)

Резонансно-туннельный транзистор (resonant tunneling transistor (gated resonant tunneling diode))

Логический элемент (monostable-bistable transition logic element – MOBILE)

3.3. Спинтроника (spintronics)

область науки и техники, занимающаяся созданием, исследованием и применением электронных приборов, в которых спин электрона наравне с его зарядом используется для обработки информации

3.3.1. Гигантское магнитосопротивление (giant magnetoresistance effect)

Протекание тока перпендикулярно плоскости структуры (current-perpendicularto-plane – CPP)

From the History of the Giant Magnetoresistance Effect

Albert Fert (1938) Université Paris-Sud Orsay, France

Am

The Nobel Prize in Physics, 2007

for the discovery of Giant Magnetoresistance

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, *Phys. Rev. Lett.* 61(21), 2472-2475 (1988).
G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, *Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange*, *Phys. Rev. B* 39(7), 4828-4830 (1989).

3.3.2. Спин-контролируемое туннелирование (tunneling magnetoresistance effect)

3.3.3. Управление спинами электронов в полупроводниках

Расщепление состояний носителей заряда по спинам

 $\begin{aligned} & \mathbf{Mагнитныe} \\ & \mathbf{материалы,} \\ & \mathbf{примеси} \\ \mathbf{Эффект} \\ \mathbf{Зеемана} \\ \mathbf{Seeman effect} \\ \mathbf{Zeeman effect} \\ \mathbf{H}_{so} = \alpha_s \begin{pmatrix} \mathbf{Rashba} \text{ effect} \\ \mathbf{S} \end{pmatrix} = \alpha_s k \end{aligned}$

. Перенос спин-поляризованных носителей заряда (механизмы спин-релаксации в полупроводниках)

Механизм Бира-Аронова-Пикуса

 $\frac{\mathbf{\hat{Bir-Aronov-Pikus mechanism}}}{\tau_s = \frac{2}{\tau_0} N_a a_B^3 \frac{v_k}{v_B}} \left[\frac{p}{N_a} |\psi(0)|^4 + \frac{S(N_a - p)}{3N_a} \right]$

Механизм Эллиота-Яфета (Elliot-Yafet mechanism)

$$\frac{1}{\tau_s(E_k)} = A \left(\frac{\Delta_{so}}{E_g + \Delta_{so}}\right)^2 \left(\frac{E_k}{E_g}\right)^2 \frac{1}{\tau_p(E_k)}$$

∕ıl‴

Следствие обменного взаимодействия и рекомбинации электронов и дырок. Низкие *T*, *p*-полупроводники.

Следствие спин-орбитального рассеивания, при столкновении электронов с фононами или примесями. Низкие и умеренные *Т.*

Механизм Дьяконова-Перела (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel (D'yakonov-Perel) (D'yakonov

Следствие спин-расщепления зоны проводимости. Повышенные *Т*.

сверхтонкое взаимодействие спинов электронов и спинов ядер (hyperfine interaction of the electron spins and nuclear spins)

Определение спина носителей заряда

3.3.4. Эффект Кондо (Kondo effect)

Квантовая точка в режиме Кондо

Am

3.3.5. Электронные приборы на спиновых эффектах

Спиновые транзисторы

спиновой полевой транзистор (spin field-effect transistor)

$$J_0 = \frac{2e}{h} \int_0^\infty dE \left[f\left(E - E_F\right) - f\left(E + eV_{sd} - E_F\right) \right]$$

S. Datta, B. Das, Electronic analog of the electrooptic modulator, *Appl. Phys. Lett.* **56**(7), 665-667 (1990).

<u>I</u>m

время-пролетный спиновой транзистор (transit time spin transistor)

I. Appelbaum, D. J. Monsma, Transit-time spin field-effect transistor, *Appl. Phys. Lett.* **90**, 262501 (2007).

магнитный туннельный транзистор (magnetic tunneling transistor)

Am

S. van Dijken, X. Jiang, S. S. P. Parkin, Nonmonotonic bias voltage dependence of the magnetocurrent in GaAs-based magnetic tunnel transistors, *Phys. Rev. Lett.* **90**, 197203 (2003).

Am

спин-вентильный транзистор (spin-valve transistor)

D. J. Monsma, J. C. Lodder, T. J. A. Popma, B. Dieny, Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor, *Phys. Rev. Lett.* **74**(26), 5260-5263 (1995).

Сенсоры на гигантском магнитосопротивлении (GMR sensors)

Am

Магнитная читающая головка (magnetic read head)

Ячейка памяти на гигантском магнитосопротивлении

Ячейки памяти на туннельном магнитосопротивлении (TMR memory cells)

структуры металл/диэлектрик/метал

Fig. 9.14 (a) MRAM (magnetoresistive random-access memory) bit cell structure, showing the sense path and programming lines. (b) Bit cell material stack of a magnetic tunnel junction (MTJ) showing the synthetic antiferromagnetic (SAF) free layer [9.51]. (c) Resistance (expressed as resistance-area product RA of the MTJ material) versus field for a 0.6 μ m × 1.2 μ m bit with (*red curve*) and without (*blue curve*) hard axis field applied. The parallel magnetization is low resistance and the antiparallel state is high resistance with a ratio in this case of 58% [9.52]. (Reprinted with permission from [9.51] (a) (b) and [9.52] (c). © 2005 IEEE (a) (b) and © 2004 Materials Research Society (c))

Fig. 9.15 The pulse sequence for toggling a magnetic tunnel junction MRAM bit. The pulses of the two write lines rotate the synthetic antiferromagnet (SAF) by 180° to switch between the antiparallel (high resistance) and parallel (low resistance) orientation of the magnetization. Only the bottom layer of the SAF, close to the insulating layer, determines the resistance of the bit. I_1 and I_2 are the programming currents in the lines 1 and 2, respectively, whereas H_1 and H_2 are the corresponding magnetic fields. Timing intervals between pulses are indicated by t_1 , t_2 , t_3 , t_4 . (Reprinted with permission from [9.52]. © 2004 Materials Research Society)

структуры металл/диэлектрик/полупроводник

