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Cadherins and integrins crosstalk
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Tyrosine phosphorylation of -catenin
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Model showing how the phosphorylation/dephosphorylation of B-catenin may be homeostically regulated. Src or the EGFR (red hexagon)

have the potential to phosphorylate B-catenin (blue oval) at Y654 (blue starburst), potentially causing loss of adhesion through loss of the
association between B-catenin and cadherin. This phenotype may be rescued by the presence of the tyrosine phosphatase PTP1B (purple octagon)
in the cadherin complex. PTP1B binds directly to cadherin following phosphorylation at Y152 by the tyrosine kinase Fer (orange circle), bound

to p120 catenin (green circle). When bound to cadherin, PTP1B is positioned to maintain B-catenin in a dephosphorylated state and thus maintain
the integrity of cadherin-mediated adhesions.



Phosphorylation in cadherin-dependent contacts
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Fig. 2. Structural and functional regulation of the cadherin-catenin complex by the balance of tyrosine kinase and
phosphatase activities. Cadherin binds p120 and B-catenin, which in turn binds «-catenin. The integrity of this complex is
negatively regulated by phosphorylation of B-catenin by receptor tyrosine kinases (RTKs) and cytoplasmic tyrosine kinases
(Fer, Fyn, Yes, and Src), which phosphorylate (red arrows) specific tyrosine residues in B-catenin (Y654, Y142), which leads
to dissociation of the cadherin-catenin complex. Integrity of the cadherin-catenin complex is positively regulated by
[3-catenin phosphorylation by casein kinase Il, and dephosphorylation by protein tyrosine phosphatases that bind p120 and
[-catenin (green arrows). Changes in the phosphorylation state of B-catenin (bottom) affect cell-cell adhesion, cell migration,
and the level of signaling (3-catenin.




Cadherin regulation
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Fig. 3. Intersection of pathways controlling Wnt/p-catenin signaling and
cadherin-mediated adhesion. Connections between cadherin and Wnt/3-
catenin signaling pathways are based on studies in tissue culture cells and in
tissues, and some involve manipulations of protein levels and expression
pattems (for details, see text). All possible intersections between these

pathways and their outcomes are represented together as a map, although
individual pathways are likely to occur only in specific physiological contexts.
Pathways that activate are indicated by solid green, pathways that reduce
activity are indicated in solid red, and indirect consequences of pathway
activation or inactivation are indicated by dotted lines.



Wnt signaling



Major morphogens:

- Wnts

- Hedgehogs

- Notch ligands (Delta-like/Jugged)

- BMPs (Bone Morphogenic Proteins)
- FGFs

- Retinoids



Wnt palmitoylation
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Wnt signaling to B-catenin
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Hedgehog signaling



Mammalian hedgehogs:

- Sonic hedgehod (SHH)
- Indian hedgehog (IHH)
- Desert hedgehog (DHH)



Hedgehog modifications
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Hedgehog modifications
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Hedgehog secretion
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Hedgehog signaling
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hWIF and Shifted
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Figure 1. Common Domain Structure and Distinct Functions of Human WIF-1 and Drosophila Shifted

(A) Domain structure of human WIF-1 (hWIF-1) and Shifted. Both proteins contain a signal sequence (SS), WIF domain (WD), and five EGF-
like repeats. WD of hWIF-1 is sufficient for its function, whereas both WD and EGF-like repeats are essential for the activity of Shifted.

(B) hWIF-1 antagonizes Wnt signaling by preventing Wnt from binding to its receptors, Frizzled (Fz) and LRP5/6.

(C) Shifted stabilizes Hh possibly by enhancing Hh/heparan sulfate proteoglycan (HSPG) interaction.



Notch signaling



Delta-Notch signaling
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Notch signaling

- Delta-like/Jugged: DIl 1,3,4, Jagl,2 — canonical ligands

- Notch - receptor

- ADAM (TACE, Kuzbanian) — metalloprotease for S2 cleavage
- y-secretase complex (presenilin-containing) for S3 cleavage

- NP or NICD, or ICN - transcriptionally active Notch
fragment

- CSL, CBF1/RBPJK, SuH (suppressor of hairless) —

transcription factor
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TGFBR-family receptors



TGFp-family ligands and receptors
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The TGF-p Superfamily
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TGFp signaling and crosstalk with EGFR
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Smad proteins
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TPR-V signaling

Insulin/IGFs

O TBR-V Ligand

IRNGF-IR|

' Plasma membrane

1\

]

Metabolic/Growth signaling

Degradation

Protein Phosphatase

@ IRS-1/IRS-2




TPR-LII and V signaling
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TGFp-induced growth arrest

v /0 ~a

Active form
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Fig. 1. The cell cycle arrest response to TGF-3 A. Two classes of antiproliferative gene responses are known to be induced by TGF-J.
The first 1s the cdk-inhibitory response that includes the induction of pl5. p21. and p27. and the down-regulation of cdc25A. The
second 1s the c-myc down-regulation that is observed in most cell types. B. The pl5 binding to cyclin D-cdk4 leads to the shuttling of
p27 from active cyclin D-cdk4-p27 to cyclin E-cdk2 complexes, resulting in their ultimate inhibition as well.



Signaling to gastrulation
VENTRAL «=———> DORSAL

f

ANIMAL
_— >
! ~Wnt11 signal Wnt11 signal
protein activates combines with
VEGETAL Whnt pathway on : Xnr to induce [
/ one side of embryo / Organizer | .
I‘ [ " '
/ | |
Xnr proteins induce mesoderm BMP4 protein Organizer releases
and gastrulation movements (induced by Xnr) diffusible antagonists
of Wnt and BMP
| |
dorsoventral signal gradient is created to control tissue

VegT gene regulatory protein in
vegetal hemisphere directs
(B)
pattern and coordinate gastrulation movements

synthesis of Xnr signal proteins
(@

(A)



STRESS SIGNALING



Reactive oxygen species



Reactive oxygen species
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ROS levels

1) Moderate (mostly by NADPH-oxidase to GF,
cytokines, TNFa-like ligands; needed for
mitogenic signaling)

2) High (mostly stress-induced; usually
pro-apoptotic)

3) The highest — a consequence of mitochondrial
disfunction during apoptosis



Oxidative modifications of proteins

A MODIFICATION OF PROTEINS BY OXIDATION OF CYSTEINE RESIDUES
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Signaling targets of ROS

- Tyrosine phosphatases
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Cell damage targets of ROS

- Tyrosine phosphatases
- Proline hydroxylase (PHD)



Signaling targets of ROS

- Tyrosine phosphatases
- Proline hydroxylase (PHD)
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Figure 1. Hypoxia-inducible factor (H/F)-1-a and HIF-1-§ are constitutively expressed in the cell. During normoxia, HIF-1-«a is hydroxylated by prolyl
hydroxylase (PHD), which facilitates its interaction with von Hippel-Lindau protein (vHL), the recognition component of an E3 ubiquitin ligase.
Ubiquitination irrevocably labels the protein for degradation in the proteasome. During hypoxia, increases in mitochondrial reactive oxygen species trigger
inhibition of PHD, allowing HIF-1-«a to heterodimerize with HIF-1-B, transit to the nucleus, and activate transcription.



ROS in HIF-1 signaling
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Signaling targets of ROS

- Tyrosine phosphatases

- Proline hydroxylase (PHD)
- ASK-1 (via thioredoxin)

- JNK (via GSTp)

- PKC

- Ras

- IKK (to NFKkB)

- AP-1, p53 (via Ret-1)



NO



NO-synthases

- INOS (inducible)
- eNOS (endothelial)
- nNOS (neuronal)



Mechanisms of NO action

- S-nitrosylation of proteins
- peroxynitryl formation

- co-factor for soluble guanylate cyclase



NO and regulation of cGMP synthesis
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