Definite Integration by Reduction
Methods
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Now consider I, =|sin" xdx

* Using exactly the same method obtains
exactly the same result.
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Using this reduction formula
successively

* Repeatedly applying the formula, we find that:




Using this reduction formula
successively

* The final term will depend on if n is even or odd.
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 Hence in both cases, when n is even:
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Using this reduction formula
successively

e If nis odd:
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 Hence in both cases, when n is odd:
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Example

 Evaluate cos® xdx
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 Evaluate

* nis odd so,

* Hence,
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