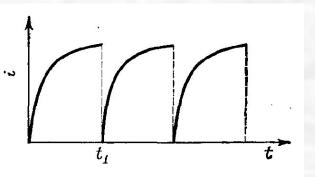
Методы изучения кинетики электродных процессов

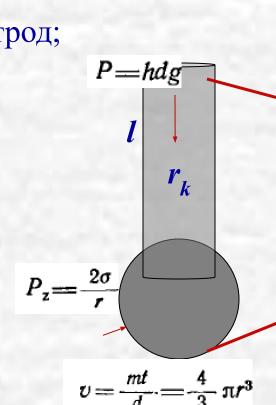

СП6ГУ 2010

Лекция 5

 Электрохимические методы анализа и их применение для изучения кинетики

• Полярография

Ртутный капающий электрод;



Зависимость тока от врекапающего ртутного мени электрода.

$$\overline{r} = \frac{3}{4} \left(\frac{3\overline{m}t_1}{4\pi d} \right)^{1/3}$$

$$\overline{m} = \frac{\pi r_k^4 dP}{8nI}$$

$$\overline{A} = \frac{1}{t_1} \int_{0.85m^{2/3}}^{t_1} t^{2/3} dt = 0.51m^{2/3} t_1^{2/3}$$

А — аккумулятор; Р — делитель напряжения; П - потенциометр; Г - гальвано-

лярографической установки:

Принципиальная схема по-

метр; 1 — растущая ртутная капля; 2 капилляр; 3 — система для регулирования высоты ртутного столба; 4 — электрод сравнения; 5 — раствор электролита; 6 вспомогательный ртутный электрод

• Полярография

$$i_g = 607nm^{2/3} t_1^{1/6} D^{1/2} C^0$$

Уравнение Ильковича

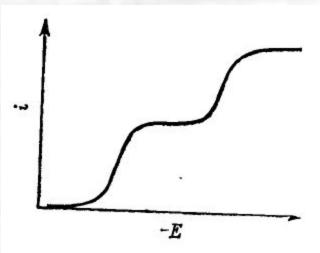
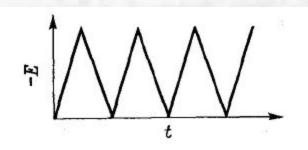



Схема полярографических волн при наличии в растворе двух деполяризаторов.

• Вольтамперометрия

Зависимость напряжения от времени в вольтамперометрии.

$$i_p = 2,69 \cdot 10^5 n^{3/2} A D_{\rm Ox}^{1/2} V^{1/2} C_{\rm Ox}^0$$

Уравнение Рендлса-Шевчика

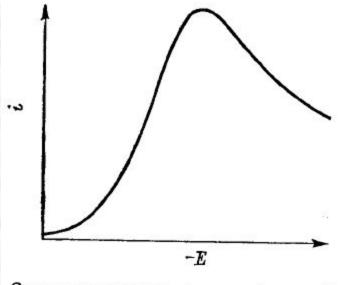
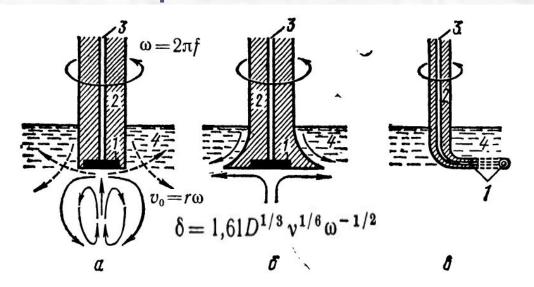
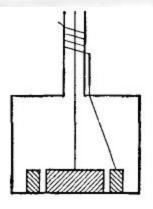



Схема вольтамперометрической кривой.

• Метод вращающегося диска



Различные типы вращающихся электродов в разрезе:

a — обычный вращающийся дисковый электрод; b — вращающийся дисковый электрод по Риддифорду; b — b — основной металл электрода; b — изолирующая оболочка электрода (обычно тефлон); b — токоотвод; b — раствор

Уравнение Левича

$$i = 0,62nFD^{2/3}\omega^{1/2}v^{-1/6}(c^0-c^s)$$

 $[i]=A/M^2; [D]=[v]=M^2/c; [c]=MOЛЬ/M^3[\omega]=pag/c.$

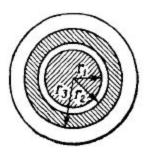


Схема дискового электрода с кольцом.

Заштрихованная часть — проводник, незаштрихован

ная - изолятор.

• Хронопотенциометрия (i=const)

Уравнение Санда

$$\tau^{1/2} = \frac{\pi^{1/2} nFD^{1/2} C^0}{2i_0}$$

Разрешающая способность методов и скорость электронных процессов

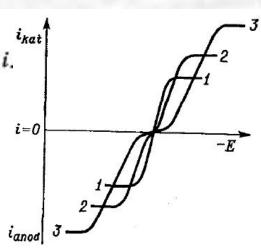
• Обратимые и необратимые процессы

Стадии: массоперенос, гетерогенная электрохимическая реакция

$$E=E^0+rac{RT}{nF}\lnrac{C_{
m Ox}\left(0,\,t
ight)}{C_{
m Red}\left(0,\,t
ight)}$$
 $E
eq E^0+rac{RT}{nF}\lnrac{C_{
m Ox}\left(0,\,t
ight)}{C_{
m Red}\left(0,\,t
ight)}$ $T=a\pm b\lg i.$ $T=a\pm b\lg i$

Влияние скорости переноса деполяризатора на обратимость электродного процесса.

 \overline{v}_{ϱ} — скорость переноса заряда; \overline{v}_{1} , \overline{v}_{2} , \overline{v}_{3} — скорости массопереноса.


$$\overline{v}_{\rm p} = \frac{2D^{1/2}}{(\pi t_1)^{1/2}}$$

Хронопотенциометрия: $\bar{v}_{c} = \frac{\pi^{1/2} D^{1/2}}{2\pi^{1/2}}$

$$\overline{v}_{\rm c} = \frac{\pi^{1/2} D^{1/2}}{2\pi^{1/2}}$$

Вольтамперометрия: $\overline{v}_{\rm ch}$ =2,82 $n^{1/2}$ $D^{1/2}$ $V^{1/2}$

ВДЭ:
$$\overline{v}_d = \frac{D}{\delta}$$
 $\delta = 1.61 D^{1/3} v^{1/6} \omega^{-1/2}$

Схематические кривые ток - напряжение для различиых скоростей переноса деполяризатора.

Скорости увеличиваются от кривой 1 к

Разрешающая способность методов и скорость электронных процессов

Минимальные и максимальные значения кинетических параметров

Метод	Кинетический параметр <i>X</i>	Минимальное значение X, с	Максимальная ско- рость массопереноса, соответствующая X, см/с	Максимальное значение X, с	Минимальная скорость массопереноса, соответствующая X, см/с
Полярография	<i>t</i> ₁	2	2,4.10-3	8	1,5.10-3
Хронопотенциометрия	τ	2⋅10=3	6 · 10-2	60	3,4-10-3
вольтамперометрия ^а	$\frac{1}{V}$	10-2	1,2.10-1	590	4,8-10-4
Метод вращающегося диска	<u>1</u> ω	1,3-10-3	1,6-10-2	8,0.10-2	2 · 10-3

а V выражено в циклах в секунду.

$$Ox + ne \rightleftharpoons Red$$

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{\text{Ox}}(0,t)}{C_{\text{Red}}(0,t)}$$

• Линейная диффузия

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2}$$

$$t=0$$
, $x \geqslant 0$, $C_{\text{Ox}} = C_{\text{Ox}}^{8}$

$$t \ge 0$$
, $x \longrightarrow \infty$, $C_{0x} \longrightarrow C_{0x}^0$

$$Ox + ne \rightleftharpoons Red$$

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{Ox}(0,t)}{C_{Red}(0,t)}$$

• Хроноамперометрия

Решаем в пределе столь отрицательных потенциалов, что у поверхности $C_{ox} = 0$, т.е.

$$t>0$$
, $x=0$, $C_{\mathrm{ox}}=0$
 $i_g=rac{nFD^{1/2}AC_{\mathrm{Ox}}^0}{\pi^{1/2}\ t^{1/2}}$
Уравнение Коттрела

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^0$$

$$t \geqslant 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0$$

Зависимость предельного тока i_g от времени t для плоского электрода с постоянным потенциалом.

$$Ox + ne \rightleftharpoons Red$$

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{\text{Ox}}(0,t)}{C_{\text{Red}}(0,t)}$$

• Хронопотенциометрия

Измерения при постоянном токе i, значит, краевое условие — постоянный поток вещества

$$D_{\text{Ox}} \left(\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right)_{x=0} = \frac{i}{nFA}$$

$$C_{\text{Ox}}(0,t) = C_{\text{Ox}}^{0} - 2\lambda \left(\frac{D_{\text{Ox}} t}{\pi} \right)^{1/2}$$

$$\lambda = \frac{i}{nFAD_{\text{Ox}}}$$

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^0$$

$$t \geqslant 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0$$

$$\tau^{1/2} = \frac{\pi^{1/2} \, nFD_{\rm Ox}^{1/2} \, C_{\rm Ox}^{0} \, A}{2i}$$

Уравнение Санда

• Хронопотенциометрия

Измерения при постоянном токе і

Зависимость произведения $i\tau^{1/2}$ от силы тока. Концентрация деполяризатора (или площадь электрода) увеличивается при переходе от прямой I к прямой 3.

Измерения при токе $i=St^{1/2}$

$$\tau = \frac{2nFD_{\mathrm{Ox}}^{1/2}C_{\mathrm{Ox}}^{0}}{\pi^{1/2}S}$$

$$Ox + ne \rightleftharpoons Red$$

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{Ox}(0, t)}{C_{Red}(0, t)}$$

• Вольтамперометрия

Для обратимого процесса краевое условие — уравнение Нернста и баланс потоков;

$$t > 0$$
, $x = 0$, $\frac{C_{\text{Ox}}}{C_{\text{Red}}} = \exp\left[\frac{nF(E - E^0)}{RT}\right]$;
$$D_{\text{Ox}} \frac{\partial C_{\text{Ox}}}{\partial x} = -D_{\text{Red}} \frac{\partial C_{\text{Red}}}{\partial x} = \frac{i(t)}{nFA}.$$

$$E = E_i - Vt$$

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2}$$

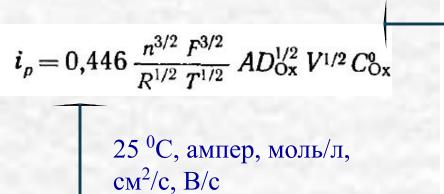
$$t = 0, \quad x \ge 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^0$$

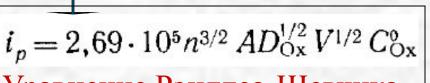
$$t \ge 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0$$

Для решения нужно добавить выражение и для восстановленной формы

$$\frac{\partial C_{\text{Red}}(x,t)^{\bullet}}{\partial t} = D_{\text{Red}} \frac{\partial^{2} C_{\text{Red}}(x,t)}{\partial x^{2}}$$

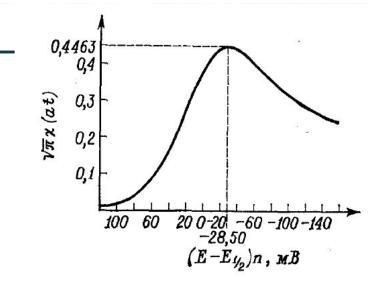
$$t = 0, \quad x \geqslant 0, \quad C_{\text{Red}} = 0$$


$$t \geqslant 0, \quad x \longrightarrow \infty, \quad C_{\text{Red}} \longrightarrow 0$$


Вольтамперометрия

$$i = nFAC_{Ox}^{0} V \overline{\pi D_{Ox} a} \chi(at)$$

$$a = \frac{nFV}{RT}$$


$$\chi(at) = -\sum_{n} (-1)^n \exp\left[-n\left(at^{1/2} - at\right)\right] \sqrt{n} \operatorname{erf} \sqrt{n at}$$

Уравнение Рэндлса-Шевчика

Для нерастворимого продукта $i_p = 3,67 \cdot 10^5 n^{3/2} A D_{\text{ox}}^{1/2} V^{1/2} C_{\text{ox}}^0$

Зависимость функции тока $\sqrt{\pi \chi(at)}$ от потенциала для обратимого электродного процесса в условиях линейной диффузии.

$$Ox + ne \rightleftharpoons Red$$

• Полярография

В диффузионном уравнении надо учитывать рост капли, т.е.

Поверхность движется навстречу раствору

$$i = nFD_{Ox}A \frac{C^0t^{2/3}}{(\pi D_{Ox}p)^{1/2}}$$

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{Ox}(0,t)}{C_{Red}(0,t)}$$

$$\frac{\partial C_{\text{Ox}}(z, p)}{\partial p} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(z, p)}{\partial z^2}$$

$$p = \frac{3}{7} t^{7/3}$$

$$\tau = 0, \quad z \geqslant 0, \quad C_{\text{Ox}} = C^0;$$

$$\tau \geqslant 0, \quad z \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C^0$$

$$\tau > 0, \quad z = 0, \quad C_{\text{Ox}} = 0.$$

$$i = nFD_{\text{Ox}}A \frac{C^0t^{2/3}}{\left(\pi D_{\text{Ox}} \frac{3}{7} t^{7/3}\right)^{1/2}} = \sqrt{\frac{7}{3}} \frac{nFD_{\text{Ox}}^{1/2}AC^0}{(\pi t)^{1/2}}$$
 Отличается от уравнения Коттрела на $(7/3)^{1/2}$ (~1.53 раза)

• Полярография

$$i_t = 706nC^0D_{\text{Ox}}^{1/2} m^{2/3} t^{1/6}$$

$$\bar{t} = \frac{1}{t_1} \int_{0}^{t_1} 706nC^0 D_{\text{Ox}}^{1/2} m^{2/3} t^{1/6} dt =$$

$$= \frac{6}{7} \cdot 706nC^{0}D_{\text{Ox}}^{1/2} \ m^{2/3} \ t^{1/6} = 607nD_{\text{Ox}}^{1/2} \ C^{0} \ m^{2/3} \ t^{1/6}.$$

$t_{i} = 2t_{i} - 3t_{i} - t$

Уравнение Ильковича

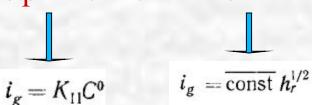


Схема зависимости мгновенного и среднего тока от времени.

 t_1 — время жизни капли; средний ток обозначен волнистой линией.

Критерий диффузионного тока

$$Ox + ne \rightleftharpoons Red$$

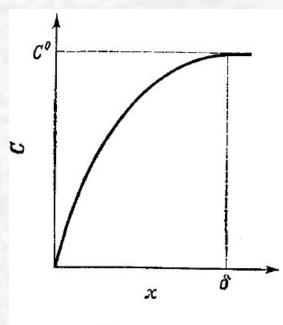
$$E = E^0 + \frac{RT}{nF} \ln \frac{C_{\text{Ox}}(0,t)}{C_{\text{Red}}(0,t)}$$

ВДЭ

Нужно решать уравнение в условиях конвективного переноса вещества

$$S_x \frac{dC_{\mathrm{Ox}}}{dx} = D \frac{d^2C_{\mathrm{Ox}}}{dx^2}$$
 Скорость конвекции

Потенциал может быть наложен как постоянный (как в хроноамперометрии), так и с разверткой (как в вольтамперометрии). От этого зависят граничные условия.


ВДЭ

Предельный ток в случае наложения на электрод постоянного потенциала; Краевые условия те же, что в хроноамперометрии:

$$S_x \frac{dC_{\mathrm{Ox}}}{dx} = D \frac{d^2C_{\mathrm{Ox}}}{dx^2}$$

Скорость конвекции

$$t=0$$
, $x \ge 0$, $C_{\text{Ox}} = C_{\text{Ox}}^0$
 $t \ge 0$, $x \longrightarrow \infty$, $C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0$
 $t > 0$, $x=0$, $C_{\text{Ox}} = 0$

$$i_g$$
= 0,61 $nFAD^{2/3}C^0v^{-1/6}\omega^{1/2}$. Уравнение Левича

Зависимость концентрации деполяризатора (С) от расстояния от дискового электрода (х).

δ — толщина диффузионного слоя.

• Обобщение приведенных зависимостей

Ток в цепи пропорционален концентрации и зависит от фактора, определяющего скорость массопереноса:

$$i_g = \frac{\overline{n}FD^{1/2}AC_{\text{Ox}}^0}{\pi^{1/2}t^{1/2}}$$

Уравнение Коттрела хроноамперометрия

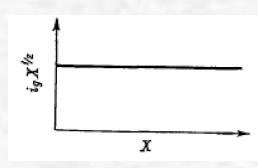
$$\tau^{1/2} = \frac{\pi^{1/2} nFD_{Ox}^{1/2} C_{Ox}^{0} A}{2i}$$

Уравнение Санда - хронопотенциометрия

$$i_p = 2.69 \cdot 10^5 n^{3/2} A D_{\text{Ox}}^{1/2} V^{1/2} C_{\text{Ox}}^0$$

Уравнение Рэндлса-Шевчика вольтамперометрия

$$i_g = 0.61 nFAD^{2/3}C^0v^{-1/6}\omega^{1/2}$$


Уравнение Левича - ВДЭ

• Обобщение приведенных зависимостей

Обобщенное уравнение:

$$i_g = KAC^0 X^{-1/2}$$

Значение константы К				
Метод	Кинетический параметр X	Қонстанта <i>Қ</i>		
Хроноамперометрия	t	$\frac{nFD^{1/2}}{\pi^{1/2}}$		
Хронопот е нциометри я	τ	$\frac{\pi^{1/2} \ nFD^{1/2}}{2}$		
вольтамперометрия	$\frac{1}{V_{I}}$	$2,69 \cdot 10^5 n^{3/2} D^{1/2}$		
Метод вращающегося диска	$\frac{1}{\omega}$	$0,61 nFD^{2/3} v^{-1/6}$		

$$Ox + ne \stackrel{k_{fh}}{\rightleftharpoons} Red$$

$$E = E^0 + \frac{RT}{nR} \ln \frac{C_{\text{Ox}}(0,t)}{C_{\text{Red}}(0,t)}$$

$$k_{\rm fh} = k_{\rm s} \exp \left[\frac{\alpha n_{\rm c} F (E - E^{\rm 0})}{RT} \right]$$

• Линейная диффузия

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2},$$

$$\frac{\partial C_{\text{Red}}(x,t)}{\partial t} = D_{\text{Red}} \frac{\partial^2 C_{\text{Red}}(x,t)}{\partial x^2}$$

$$t=0$$
, $x \geqslant 0$, $C_{\text{Ox}} = C_{\text{Ox}}^{0}$, $C_{\text{Red}} = 0$

$$t > 0$$
, $x \longrightarrow \infty$, $C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0$, $C_{\text{Red}} \longrightarrow 0$

$$Ox + ne \rightleftharpoons Red$$

• Хроноамперометрия

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2},$$

$$\frac{\partial C_{\text{Red}}(x,t)}{\partial t} = D_{\text{Red}} \frac{\partial^2 C_{\text{Red}}(x,t)}{\partial x^2}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^0, \quad C_{\text{Red}} = 0$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0, \quad C_{\text{Red}} \longrightarrow 0$$

Для определения краевых условий пишем изменение концентрации в электронной реакции и её компенсацию диффузией

Второе краевое условие — превращение окисленной формы в восстановленную

$$\begin{split} \frac{dN_{\mathrm{Ox}}}{dt} = & k_{\mathrm{fh}}C_{\mathrm{Ox}}\left(0,t\right) - k_{\mathrm{b}\mathbf{h}}C_{\mathrm{Red}}\left(0,t\right) \\ \frac{dN_{\mathrm{Ox}}}{dt} = & D_{\mathrm{Ox}}\frac{\partial C_{\mathrm{Ox}}\left(x,t\right)}{\partial x} \\ D_{\mathrm{Ox}}\left[\frac{\partial C_{\mathrm{Ox}}\left(x,t\right)}{\partial x}\right]_{x=0} = & k_{\mathrm{fh}}C_{\mathrm{Ox}}\left(0,t\right) - k_{\mathrm{bh}}C_{\mathrm{Red}}\left(0,t\right) \\ D_{\mathrm{Ox}}\left[\frac{\partial C_{\mathrm{Ox}}\left(x,t\right)}{\partial x}\right]_{x=0} = & k_{\mathrm{fh}}C_{\mathrm{Ox}}\left(0,t\right) \end{split}$$

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = -D_{\text{Red}} \left[\frac{\partial C_{\text{Red}}(x,t)}{\partial x} \right]_{x=0}$$

• Хроноамперометрия

Пренебрегая скоростью анодного процесса $i = nFAC_{\text{Ox}}^0 k_{\text{fh}} \exp(l^2 t) \operatorname{erfc}(lt^{1/2})$

В общем случае

$$i = nFAC_{\text{Ox}}^{0}k_{\text{fh}} \exp(\overline{l^{2}}t) \operatorname{erfc}(\overline{lt^{1/2}})$$

где
$$\overline{l} = (k_{\rm fh}/D_{\rm Ox}^{1/2}) + (k_{\rm bh}/D_{\rm Red}^{1/2})$$

Сравнение с диффузионным током

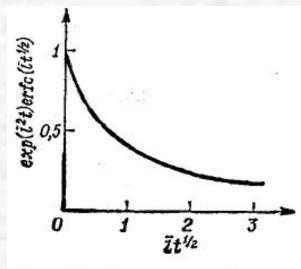


Рис. 6.1. Зависимость функции $\exp(\overline{l}^2t)\operatorname{lrfc}(lt^{1/2})$ от параметра $\overline{lt}^{1/2}$

$$\frac{i}{i_g} = \pi^{1/2} l t^{1/2} \exp(l^2 t) \operatorname{erfc}(l t^{1/2}), \quad i/i_g = 1 \text{ при } l t^{1/2} = 5$$
 $k_{\text{fh}} t^{1/2} > 5 D_{\text{Ox}}^{1/2}$

 $k_{\rm fh}t^{1/2} > 1,6 \cdot 10^{-2}$ см/с Условие обратимости потенциостатического процесса

$$Ox + ne \rightleftharpoons Red$$

• Вольтамперометрия

$$\frac{\partial C_{\mathrm{Ox}}(x,t)}{\partial t} = D_{\mathrm{Ox}} \frac{\partial^2 C_{\mathrm{Ox}}(x,t)}{\partial x^2},$$

$$\frac{\partial C_{\mathrm{Red}}(x,t)}{\partial t} = D_{\mathrm{Red}} \frac{\partial^2 C_{\mathrm{Red}}(x,t)}{\partial x^2}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\mathrm{Ox}} = C_{\mathrm{Ox}}^0, \quad C_{\mathrm{Red}} = 0$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{\mathrm{Ox}} \longrightarrow C_{\mathrm{Ox}}^0, \quad C_{\mathrm{Red}} \longrightarrow 0$$

Первое краевое условие аналогично хроноамперометрии

Учитывая зависимость для $k_{_{\mathrm{fh}}}$ и уравнение развёртки потенциала, получим

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = C_{\text{Ox}}(0,t) k_i \exp(bt),$$
 где

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = k_{\text{fh}} C_{\text{Ox}}(0,t)$$

$$k_{\text{fh}} = k_{\text{s}} \exp \left[\frac{\alpha n_{\alpha} F(E - E^{0})}{RT} \right]$$

$$E = E_{i} - Vt$$

$$D_{\text{Ox}}\left[\frac{\partial C_{\text{Ox}}\left(x,t\right)}{\partial x}\right]_{x=0} = C_{\text{Ox}}\left(0,t\right)k_{i}\exp\left(bt\right),$$
 где $k_{i} = k_{s}\exp\left[-\frac{\alpha n_{\alpha}F\left(E_{i}-E^{0}\right)}{RT}\right]$ $b = \frac{\alpha n_{\alpha}FV}{RT}$

• Вольтамперометрия

Решение:
$$i = nFAC_{\infty} V \overline{\pi D_{Ox} b} \chi (bt)$$

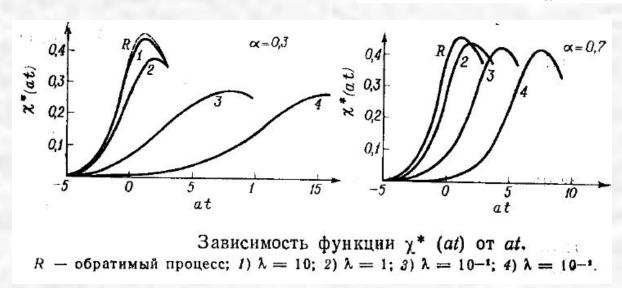
$$\chi(bt) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} \frac{(\sqrt{\pi})^j}{\sqrt{(j-1)!}} \exp\left[\left(-\frac{j\alpha n_{\alpha} F}{RT}\right) \left(E - \frac{E^0}{RT} + \frac{RT}{\alpha n_{\alpha} F} \ln \frac{\sqrt{\pi D_{\text{Ox}} b}}{k_{\text{s}}}\right)\right]$$

Максимальное значение функции 0.280, значит ток пика

$$i_p = 0.280 nFAC_{Ox}^0 V \overline{\pi D_{Ox} b}$$

При 25
0
С ток пика i_{n} =3,00 · 10 ${}^{5}n$ (αn_{α}) ${}^{1/2}$ $AD_{\rm Ox}^{1/2}V^{1/2}C_{\rm Ox}^{0}$

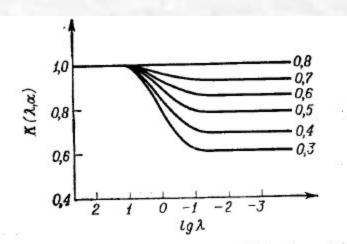
• Вольтамперометрия

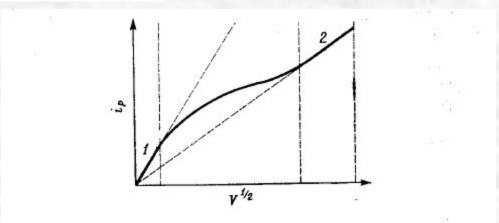

Если скорости массопереноса и обмена электронами сопоставимы, решение более сложное:

$$i = nFAC_{\text{Ox}}^{0} \sqrt{D_{\text{Ox}}a} \chi^{*} (at)$$

Эта функция зависит от параметра

$$\lambda = \frac{k_{\rm s} \left(\frac{1}{\sqrt{D_{\rm Ox}}}\right)^{\beta} \left(\frac{1}{\sqrt{D_{\rm Red}}}\right)^{\alpha}}{a}$$


$$a = \frac{nFV}{RT}$$


• Вольтамперометрия

Ток пика может быть не пропорционален корню из скорости развертки

$$i_p = 0.452 \frac{n^{3/2} F^{3/2}}{R^{1/2} T^{1/2}} AD_{Ox}^{1/2} V^{1/2} C_{Ox}^0 K(\lambda, \alpha)$$

Зависимость функции $K(\lambda, \alpha)$ от $\lg \lambda$. Цифрами обозначены величины коэффициента переноса.

Схематическая зависимость тока пика от квадратного корня из скорости развертки напряжения поляризации.

область обратимости процесса; 2 — область необратимости. Промежуточная область соответствует квазиобратимости.

$$Ox + ne \rightleftharpoons Red$$

• Хронопотенциометрия

$$\frac{i_0}{nF}$$
 = $k_{\rm fh}C_{\rm Ox}\left(0,\,t\right)$ учитывая

$$\frac{\partial C_{\text{Ox}}(x,t)}{\partial t} = D_{\text{Ox}} \frac{\partial^2 C_{\text{Ox}}(x,t)}{\partial x^2},$$

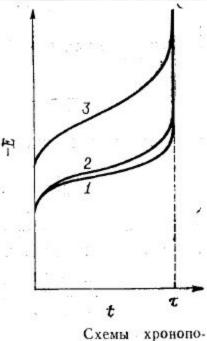
$$\frac{\partial C_{\text{Red}}(x,t)}{\partial t} = D_{\text{Red}} \frac{\partial^2 C_{\text{Red}}(x,t)}{\partial x^2}$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^0, \quad C_{\text{Red}} \longrightarrow 0$$

$$t = 0, \quad x \geqslant 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^0, \quad C_{\text{Red}} = 0$$

$$\frac{dN_{\rm Ox}}{dt} = k_{\rm fh}C_{\rm Ox}(0, t)$$

$$i = nFA \frac{dN_{Ox}}{dt}$$


$$k_{\rm fh} = k_{\rm s} \exp \left[\frac{\alpha n_{\alpha} F (E - E^{\rm o})}{RT} \right]$$

• Хронопотенциометрия

$$C_{\mathrm{Ox}}\left(0,t\right) = C_{\mathrm{Ox}}^{0} - \frac{2i_{0}t^{1/2}}{\pi^{1/2}nFD_{\mathrm{Ox}}^{1/2}}$$

$$\frac{i_{\theta}}{nF} = k_{\text{fh}} \left(C_{\text{Ox}}^{\theta} - \frac{2i_{\theta}t^{1/2}}{\pi^{1/2}nFD_{\text{Ox}}^{1/2}} \right) \qquad \qquad \frac{i_{\theta}}{nF} = k_{\text{fh}} \left(\frac{2i_{\theta}\tau^{1/2} - 2i_{\theta}t^{1/2}}{\pi^{1/2}nFD_{\text{Ox}}^{1/2}} \right)$$

$$\frac{t^{1/2}}{\tau^{1/2}} = 1 - \frac{\pi^{1/2} D_{\text{Ox}}^{1/2}}{2\tau^{1/2} k_{\text{fb}}}$$

Схемы хронопотенциометрических кривых. 1 — обратимый процесс; 2 — квазиобратимый процесс; 3 — необратимый процесс.

Критерий обратимости процесса:

$$\pi^{1/2}D_{
m Ox}^{1/2}/2 au^{1/2}k_{
m fh}\ll 1$$
 $k_{
m fh}\, au^{1/2}>2.8\cdot 10^{-2}~{
m cm}\cdot{
m c}^{-1/2}$

$$Ox + ne \rightleftharpoons Red$$

• Полярография

краевые условия аналогичны хроноамперометрии

$$\frac{\partial C_{\mathrm{Ox}}(x,t)}{\partial t} = D_{\mathrm{Ox}} \frac{\partial^2 C_{\mathrm{Ox}}(x,t)}{\partial x^2} + \frac{2x}{3t} \frac{\partial C_{\mathrm{Ox}}(x,t)}{\partial x},$$

$$\frac{\partial C_{\mathrm{Red}}(x,t)}{\partial t} = D_{\mathrm{Red}} \frac{\partial^2 C_{\mathrm{Red}}(x,t)}{\partial x^2} + \frac{2x}{3t} \frac{\partial C_{\mathrm{Red}}(x,t)}{\partial x}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\mathrm{Ox}} = C_{\mathrm{Ox}}^0, \quad C_{\mathrm{Red}} = 0$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{\mathrm{Ox}} \longrightarrow C_{\mathrm{Ox}}^0, \quad C_{\mathrm{Red}} \longrightarrow 0$$

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = k_{\text{fh}} C_{\text{Ox}}(0,t) - k_{\text{bh}} C_{\text{Red}}(0,t)$$

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = k_{\text{fh}} C_{\text{Ox}}(0,t)$$

$$D_{\mathrm{Ox}} \left[\frac{\partial C_{\mathrm{Ox}}(x,t)}{\partial x} \right]_{x=0} = -D_{\mathrm{Red}} \left[\frac{\partial C_{\mathrm{Red}}(x,t)}{\partial x} \right]_{x=0}$$

• Полярография

Решение записывают через табулированную функцию

$$F(\chi) = \frac{i}{i_g^{\chi}}$$

$$\chi = \sqrt{\frac{12t}{7}} \left(\frac{k_{\text{fh}}}{D_{\text{Ox}}^{1/2}} + \frac{k_{\text{bh}}}{D_{\text{Red}}^{1/2}} \right)$$

χ нли χι	F (x)	$F(\chi_1)$	Х или Х или	F (x)	$\overrightarrow{F}(\chi_1)$
0,005	0,00441	0,00309	1,2	0,5552	0,4443
0,01	0,00880	0,00617	1,4	0,5970	0,4845
0,02	0,01748	0,01128	1,6	0,6326	0,5196
0.03	0.02604	0,01831	1.8	0.6623	0,5505
0,04	0,03447	0.02429	2,0	0.6879	0,5777
0,05	0,04281	0,03021	2,5	0,7391	0,6339
0.06	0,05102	0,03605	3,0	0,773	0,677
0,08	0,06712	0,04758	4,0	0,825	0,739
0,1	0,08279	0,05886	5,0	0,8577	0.781
0,2	0,1551	0,1119	6,0	0,8803	0.812
0,3	0,2189	0,1600	8.0	0,9093	0,8535
0,4	0,2749	0,2036	10,0	0,9268	0,8801
0,5	0,3245	0,2433	15,0	0,9508	0,9177
0,6	0,3688	0,2796	20,0	0,9629	0,9373
0,7	0,4086	0,3129	30	0,9752	0,9576
0,8	0,4440	0,3435	50	0,9851	0,9743
0,9	0,4761	0,3717	110	0,9932	0,9882
1,0	0,5050	0,3977	350	0,9979	0,9963

$$\overline{F}(\gamma_{.1}) = \frac{\overline{i}}{\overline{i}_{g}^{x}}$$

$$\chi_{1} = \sqrt{\frac{12t_{1}}{7} \left(\frac{k_{\text{fh}}}{D_{\text{Ox}}^{1/2}} + \frac{k_{\text{bh}}}{D_{\text{Red}}^{1/2}} \right)}$$

Для необратимых процессов

$$\chi = \sqrt{\frac{12l}{7}} \frac{k_{\rm fh}}{D_{\rm Ox}^{1/2}}$$

Поэтому кинетический контроль заметен только у основания волны, где константа скорости невелика

32

$$Ox + ne \rightleftharpoons Red$$

ВДЭ

краевые условия аналогичны хроноамперометрии

$$S_{x} \frac{\partial C_{\text{Ox}}}{\partial x} = D_{\text{Ox}} \frac{\partial^{2} C_{\text{Ox}}}{\partial x^{2}}$$

$$t = 0, \quad x \geqslant 0, \quad C_{\text{Ox}} = C_{\text{Ox}}^{0}, \quad C_{\text{Red}} = 0$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{\text{Ox}} \longrightarrow C_{\text{Ox}}^{0}, \quad C_{\text{Red}} \longrightarrow 0$$

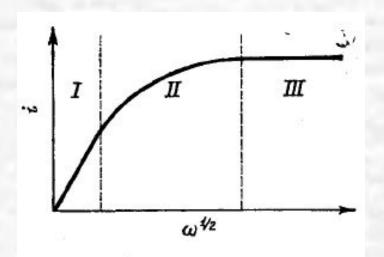
$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = k_{\text{fh}} C_{\text{Ox}}(0,t) - k_{\text{bh}} C_{\text{Red}}(0,t)$$

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = k_{\text{fh}} C_{\text{Ox}}(0,t)$$

$$D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x,t)}{\partial x} \right]_{x=0} = -D_{\text{Red}} \left[\frac{\partial C_{\text{Red}}(x,t)}{\partial x} \right]_{x=0}$$

$$i = 0.62nFAD_{Ox}^{2/3} v^{-1/6} \omega^{1/2} [C_{Ox}^0 - C_{Ox}(0)]$$

ВДЭ


Решение:

$$i = \frac{nFAD_{\rm Ox} C_{\rm Ox}^0 k_{\rm fh}}{\delta k_{\rm fh} + D_{\rm Ox}}$$

$$\frac{i}{i_g} = \frac{\delta k_{\rm fh}}{\delta k_{\rm fh} + D_{\rm Ox}}$$

$$\delta = 1.62 D^{1/3} v^{1/6} \omega^{-1/2}$$

Критерий необратимости: $\delta k_{\rm fh} < 10^{-6} \, {\rm cm}^2 {\rm c}^{-1}$

Зависимость тока і от квадратного корня из частоты вращения © дискового электрода. Потенциал электрода соответствует области образования волны, а электродный процесс протекает с умеренной скоростью. Область І — процесс контролируется скоростью массопереноса; область ІІ — процесс контролируется одновременно диффузией и кинетикой обмена заряда; область ІІІ — активационный контроль.

• Обсуждение полученных зависимостей

Ток в цепи пропорционален концентрации и зависит от фактора, определяющего скорость массопереноса:

$$i = nFAC_{\text{Ox}}^{0}k_{\text{fh}} \exp(\overline{l^{2}}t) \operatorname{erfc}(\overline{lt^{1/2}})$$

хроноамперометрия

$$\frac{i_{\theta}}{nF} = k_{\text{fh}} \left(C_{\text{Ox}}^{\theta} - \frac{2i_{\theta}t^{1/2}}{\pi^{1/2}nFD_{\text{Ox}}^{1/2}} \right)$$

хронопотенциометрия

$$i = nFAC_{Ox}^{0} \sqrt{D_{Ox}a} \chi^{*} (at)$$

вольтамперометрия

$$i = \frac{nFAD_{Ox} C_{Ox}^{0} k_{fh}}{\delta k_{fh} + D_{Ox}}$$

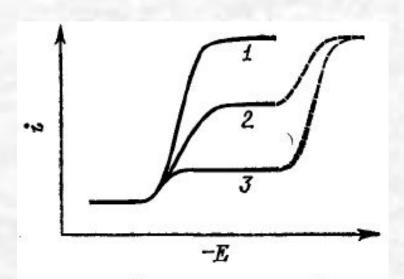
ВДЭ

• Обсуждение полученных зависимостей

Для начального участка кривой ток-потенциал:

$$i = nFAk_{\text{fh}}^{0}C_{\text{Ox}}^{0}$$

$$k_{\text{fh}} = k_{\text{fh}}^{0} \exp\left(-\frac{\alpha n_{\alpha}FE}{RT}\right)$$


$$i = nFAk_{\text{fh}}^{0} \exp\left(-\frac{\alpha n_{\alpha}FE}{RT}\right)$$

Критерий необратимости: зависимость lg(i) от E линейна;

В полярографии, кроме того, используют зависимость тока от высоты резервуара со ртутью.

$$i = 0.81 n F m^{2/3} t^{2/3} k_{\rm fh} C_{\rm Ox}^0$$
 — i не зависит от h

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

Схемы полярографических кривых электродного процесса $1-k_1=\infty$; $2-k_1$ имеет копечное значение; $3-k_1=0$.

$$D_{\mathbf{A}} \left[\frac{\partial C_{\mathbf{A}}(x,t)}{\partial x} \right]_{x=0} = 0$$

Уравнения Фика с учётом химической реакции:

$$\frac{\partial C_{A}(x,t)}{\partial t} = D_{A} \frac{\partial^{2} C_{A}(x,t)}{\partial x^{2}} - k_{1} C_{A}(x,t) + k_{2} C_{Ox}(x,t),$$

$$\frac{\partial C_{Ox}(x,t)}{\partial t} = D_{Ox} \frac{\partial^{2} C_{Ox}(x,t)}{\partial x^{2}} +$$

$$+ k_{1} C_{A}(x,t) - k_{2} C_{Ox}(x,t).$$

$$t=0, x \ge 0, \frac{C_{Ox}(x,0)}{C_{A}(x,0)} = K$$

$$C_{Ox}(x,0) + C_{A}(x,0) = C^{0},$$

$$t > 0, \quad x \longrightarrow \infty, \quad C_{Ox}(x, t) + C_{A}(x, t) \longrightarrow C^{0}$$

$$\frac{C_{Ox}(x, t)}{C_{A}(x, t)} \longrightarrow K.$$

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

• Хроноамперометрия

$$t > 0$$
, $x = 0$, $C_{Ox}(0, t) = 0$

$$i_k = nFAD^{1/2} C^0 K^{1/2} k_1^{1/2} \exp(Kk_1 t) \operatorname{erfc}(Kk_1 t)^{1/2}$$

$$\frac{i_k}{i_g} = \pi^{1/2} K^{1/2} k_1^{1/2} t^{1/2} \exp(Kk_1 t) \operatorname{erfc} (Kk_1 t)^{1/2}$$

Вид уравнения аналогичен необратимым процессам; Если $Kk_1^{}$ t мала, уравнение сводится к

$$i_k = nFAD^{1/2} C^0 K^{1/2} k_1^{1/2}$$

$$A \rightleftharpoons_{k_2}^{k_1} Ox \qquad K = \frac{k_1}{k_2} \qquad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

• Хроноамперометрия

$$t > 0$$
, $x = 0$, $C_{Ox}(0, t) = 0$

$$i_k = nFAD^{1/2} C^0 K^{1/2} k_1^{1/2} \exp(Kk_1 t) \operatorname{erfc}(Kk_1 t)^{1/2}$$

$$\frac{i_k}{i_g} = \pi^{1/2} K^{1/2} k_1^{1/2} t^{1/2} \exp(Kk_1 t) \operatorname{erfc} (Kk_1 t)^{1/2}$$

Вид уравнения аналогичен необратимым процессам; Если $Kk_1^{}$ t мала, уравнение сводится к

$$i_k = nFAD^{1/2} C^0 K^{1/2} k_1^{1/2}$$

$$A \stackrel{k_1}{\rightleftharpoons} Ox \quad K = \frac{k_1}{k_2} \quad A \stackrel{k_1}{\rightleftharpoons} Ox + ne \rightleftharpoons Red.$$

• Полярография

$$\frac{\partial C_{A}(x,t)}{\partial t} = D \frac{\partial^{2}C_{A}(x,t)}{\partial x^{2}} + \frac{2x}{3t} \frac{\partial C_{A}(x,t)}{\partial x} - \frac{\partial C_{A}(x,t)}{\partial x} - \frac{\partial C_{O_{X}}(x,t) + k_{2}C_{O_{X}}(x,t)}{\partial t} = D \frac{\partial^{2}C_{O_{X}}(x,t)}{\partial x^{2}} + \frac{2x}{3t} \frac{\partial C_{O_{X}}(x,t)}{\partial x} + \frac{$$

$$t=0, x \ge 0, C_{A}(x,0)=C_{A}^{0}, C_{Ox}(x,0)=C_{Ox}^{0},$$

 $t>0, x=0, C_{Ox}(0,t)=0,$
 $D_{A}\left[\frac{\partial C_{A}(x,t)}{\partial x}\right]_{x=0}=0.$

Вид уравнения для тока в случае быстрой реакции аналогичен хроноамперометрии

$$\begin{split} D & \frac{d^2 C_{\rm A}\left(x,t\right)}{dx^2} - k_1 C_{\rm A}\left(x,t\right) + k_2 C_{\rm Ox}\left(x,t\right) = 0, \\ D & \frac{d^2 C_{\rm Ox}\left(x,t\right)}{dx^2} + k_1 C_{\rm A}\left(x,t\right) - k_2 C_{\rm Ox}\left(x,t\right) = 0. \end{split}$$

$$i_k = nFDAC_A^0 K^{1/2} k_1^{1/2}$$

• Полярография

Подставляя параметры РКЭ, получим отношение кинетического к предельному

току в виде

$$F(\chi) = \frac{i_k}{i_g} \qquad \chi = \sqrt{\frac{12}{7} K k_1 t}$$

$$\overline{F}(\chi_1) = \frac{\overline{i_k}}{\overline{i_g}} \qquad \chi_1 = \sqrt{\frac{12}{7} K k_1 t_1}$$

$$\frac{\overline{i_k}}{\overline{i_g}} = \frac{0.886 \sqrt{Kk_1t_1}}{1 + 0.886 \sqrt{Kk_1t_1}}.$$

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

• Вольтамперометрия – обратимый процесс

$$t > 0$$
, $x = 0$, $\frac{C_{\text{Ox}}}{C_{\text{Red}}} = \theta e^{-at}$ $\theta = \exp\left[\frac{nF}{RT}(E_i - E^0)\right]$ $a = \frac{nFV}{RT}$

Дополнительно надо решить уравнение Фика для восстановленной формы:

$$\frac{\partial C_{\text{Red}}(x,t)}{\partial t} = D_{\text{Red}} \frac{\partial^2 C_{\text{Red}}(x,t)}{\partial x^2} \qquad t = 0, \quad x \geqslant 0, \quad C_{\text{Red}} = C_{\text{Red}}^0 = 0$$

$$t > 0$$
, $x \longrightarrow \infty$, $C_{\text{Red}} \longrightarrow 0$, $t > 0$, $x = 0$, $D_{\text{Ox}} \left[\frac{\partial C_{\text{Ox}}(x, t)}{\partial x} \right]_{x=0} =$

$$= -D_{\text{Red}} \left[\frac{\partial C_{\text{Red}}(x, t)}{\partial x} \right]_{x=0}.$$

• Вольтамперометрия – обратимый процесс

Решение аналогично диффузионному случаю,

$$i = nFAC_{Ox}^{0} \sqrt{\pi D_{Ox}a} \chi(at)$$

Но вид функции зависит от 1/a, где $1=k_1+k_2$

1/а мало

$$\chi(at) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} \sqrt{j} \left(\frac{K}{1+K} \right) \times \exp \left[\left(-\frac{jnF}{RT} \right) (E - E_{1/2}) \right].$$

$$\chi(at) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} \sqrt{j} \times \exp\left[\left(-\frac{jnF}{RT}\right) \left(E - E_{1/2} - \frac{RT}{nF} \ln \frac{K}{1+K}\right)\right].$$

• Вольтамперометрия

$$\frac{i_k}{i_p} = \frac{1}{1,02 + 0,471 \sqrt{a/K} \sqrt{l}}$$

Значения функции тока $\sqrt{\pi} \chi(at)$ для обратимого электродного процесса с предшествующей химической реакцией первого порядка

Потен- циал ^а	Параметр $V\overline{a}/KV\overline{t}$								
	0,2	0,5	1,0	1,5	3,0	6.0	10,0		
120	0,009	0,009	0,009	0,009	0,009	0,009	0,008		
100	0,019	0,019	0.019	0,019	0,018	0,017	0,018		
80	0,041	0,040	0,039	0,038	0,035	0,031	0,027		
60	180,0	0,080	0,075	0,072	0,063	0,051	0,041		
50	0.113	0,108	0,100	0,094 0,108	0,080	0,062 0,068	0,049		
45 40	0,132 0,152	0,125 0,144	0,116	0,108	0,089	0,008	0,055		
35	0,174	0,164	0,149	0,135	0,109	0,079	0.059		
30	0,199	0,184	0,164	0,150	0,118	0,084	0,062		
25	0,224	0,206	0,183	0,164	0,127	0,089	0,064		
20	0,249	0,228	0,199	0,178	0.136	0,093	0,067		
15	0,275	0,249	0,216	0,191	0,144	0,098	0,068		
10	0,301	0,270	0,232	0,204	0,151	0,101	0,071		
5	0,324	0,289	0,246	0,215	0.158	0,104	0,072		
0	0,345	0,307	0,259	0,225	0,163	0,107	0,074		
-5	0,364	0,321	0,271	0,234	0,168	0,109	0,075		
-10	0,379	0,334	0,280	0,241	0,173	0,111	0,076		
-15	0,391	0,344	0,288	0,247	0,176	0,113	0,077		
-20	0,399	0,351	0,293	0,252	0,179	0,114	0,077		
-25	0,404	0,355	0,297	0,255	0,181	0,115	0,078		
-30	0,406	0,358	0,299	0,257	0,182	0,116	0,078		
-35	0,405	0,358	0,300	0,258	0,183	0,116	0,079		
-40 -45	0,402 0,397	0,357 0,353	0,300	0,258 0,258	0,183	0,117 0,117	0,079		
-50	0.390	0,349	0,296	0,256	0,183	0,117	0.079		
-60	0,373	0.338	0,289	0,252	0,181	0,116	0.079		
-80	0,337	0,310	0,272	0,240	0,176	0,115	0,078		
-100	0,301	0.284	0,253	0,227	0,170	0,113	0,077		
-120	0,273	0,260	0.236	0,214	0,164	0,110	0,076		
-140	0,250	0,240	0,222	0,203	0,158	0,108	0,075		
$E_{p/2}$	+29,3	+31,3	+34,4	+37,5	+44,2	+53,4	+62,2		

а Потенциалы приведены в шкале $(E-E_{1/2})n - \frac{RT}{nF} \ln \frac{K}{1+K}$.

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

• Вольтамперометрия – необратимый процесс

$$t > 0$$
, $x = 0$, $\frac{C_{\text{Ox}}}{C_{\text{Red}}} = \theta e^{-at}$ $\theta = \exp\left[\frac{nF}{RT}(E_i - E^0)\right]$ $a = \frac{nFV}{RT}$

Дополнительно надо решить уравнение:

$$D_{\text{Ox}} \frac{\partial C_{\text{Ox}}}{\partial x} = kC_{\text{Ox}} = k_t C_{\text{Ox}} \exp(bt)$$

$$k_i = k_s \exp\left[\left(-\frac{\alpha n_\alpha F}{RT}\right)(E_i - E^0)\right]$$
$$b = \alpha n_\alpha FV/RT.$$

• Вольтамперометрия – необратимый процесс

Решение аналогично не осложненному реакцией случаю,

$$i = nFAC_{0x}^{0} V \overline{\pi D_{0x} b} \chi (bt)$$

Но вид функции зависит от 1/b, где $1=k_1+k_2$

$$\chi(bt) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} \frac{(\sqrt{\pi})^j}{\sqrt{(j-1)!}} \left(\frac{K}{1+K}\right) \times \exp\left[\left(-\frac{j\alpha n_{\alpha}F}{RT}\right)\left(E - E^0 + \frac{RT}{\alpha n_{\alpha}F} \ln \frac{\sqrt{\pi Db}}{k_s}\right)\right].$$

$$\chi(bt) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} \frac{(\sqrt{\pi})^j}{\sqrt{(j-1)!}} \times \exp\left[\left(-\frac{j\alpha n_{\alpha}F}{RT}\right)\left(E - E^0 + \frac{RT}{\alpha n_{\alpha}F} \ln \frac{\sqrt{\pi Db}}{k_s}\right)\right].$$

$$\times \exp\left[\left(-\frac{j\alpha n_{\alpha}F}{RT}\right)\left(E - E^0 + \frac{RT}{\alpha n_{\alpha}F} \ln \frac{\sqrt{\pi Db}}{k_s}\right)\right].$$

 $(b/1)^{1/2}/K \text{ Велико}$ $\chi(bl) = \frac{1}{\sqrt{\pi}} \sum_{j=1}^{\infty} (-1)^{j+1} (\sqrt{\pi})^j K \sqrt{l/b} \times$ $\times \exp\left[\left(-\frac{j\alpha n_\alpha F}{RT}\right) \left(E - E^0 + \frac{RT}{\alpha n_\alpha F} \ln \frac{\sqrt{\pi Db}}{k_s} - \frac{RT}{\alpha n_\alpha F} \ln \frac{K}{1+K} + \frac{RT}{\alpha n_\alpha F} \ln \frac{K\sqrt{\pi b}}{\sqrt{l}}\right)\right].$ $i = \frac{nFAC^0D^{1/2} K\sqrt{l}}{1+\exp\left[\frac{\alpha n_\alpha F}{RT} \left(E - E^0 + \frac{RT}{\alpha n_\alpha F} \ln \frac{\sqrt{\pi Db}}{k_s} + \frac{RT}{\alpha n_\alpha F} \ln \frac{\sqrt{\pi b}(1+K)}{\sqrt{l}}\right)\right]}$

1/b велико

• Вольтамперометрия

$$\frac{i_k}{i_p} = \frac{1}{1,02 + 0,531\sqrt{b/K}\sqrt{l}}$$

Значения функции тока $\sqrt{\pi} \chi(bt)$ для необратимого электродного процесса с предшествующей химической реакцией первого порядка при различных значениях параметра $\sqrt{b}/K\sqrt{t}$

			pu , .,	., , .					
	Параметр $V \overline{b} / K V \overline{l}$								
Потенциала	0,2	0,5	1,0	1,5	3,0	6,0	10,0		
$\begin{array}{c} 160\\ 140\\ 120\\ 110\\ 100\\ 90\\ 80\\ 70\\ 60\\ 50\\ 40\\ 35\\ 30\\ 25\\ 20\\ 15\\ 10\\ -5\\ -10\\ -15\\ -20\\ -25\\ -30\\ -25\\ -30\\ -35\\ -40\\ -50\\ -60\\ -70\\ E_{\rho/2}, \text{ MB} \end{array}$	0,003 0,007 0,016 0,024 0,035 0,050 0,070 0,102 0,140 0,190 0,248 0,280 0,312 0,343 0,370 0,395 0,414 0,430 0,440 0,444 0,443 0,438 0,438 0,438 0,419 0,407 0,394 0,365 0,313 0,313 +44,2	0,003 0,007 0,016 0,024 0,034 0,049 0,070 0,099 0,134 0,179 0,230 0,257 0,282 0,307 0,349 0,364 0,375 0,382 0,385 0,385 0,386 0,383 0,371 0,362 0,354 0,362 0,364 0,375 0,362 0,364 0,375 0,362 0,364 0,375 0,362 0,364 0,375 0,362 0,364 0,362 0,364 0,375 0,362 0,364 0,362 0,362 0,364 0,362 0,362 0,362 0,362 0,362 0,362 0,364 0,362	0,003 0,007 0,016 0,023 0,034 0,048 0,067 0,126 0,126 0,126 0,226 0,244 0,263 0,279 0,292 0,302 0,315 0,318 0,318 0,318 0,317 0,314 0,306 0,301 0,306 0,295 0,261 +51,4	0,003 0,007 0,016 0,023 0,033 0,047 0,065 0,090 0,151 0,151 0,216 0,230 0,241 0,250 0,265 0,269 0,271 0,260 0,271 0,260 0,271 0,260 0,271 0,260 0,271 0,260 0,265 0,269 0,271 0,260 0,265 0,265 0,269 0,271 0,260 0,265 0,265 0,269 0,271 0,260 0,265	0,003 0,007 0,015 0,022 0,031 0,044 0,059 0,179 0,102 0,122 0,161 0,168 0,174 0,179 0,188 0,188 0,189	0,003 0,007 0,005 0,021 0,029 0,039 0,050 0,063 0,063 0,076 0,107 0,110 0,112 0,115 0,116 0,117 0,118 0,119 0,119 0,119 0,119 0,119 0,119 0,118 0,118 0,117 0,118 0,117	0,003 0,007 0,014 0,019 0,026 0,033 0,042 0,050 0,065 0,065 0,070 0,072 0,074 0,076 0,079 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,080 0,079 0,079 0,079		
		'	·	'					

 $^{^{8}}$ Потенциалы приведены в шквле (E—E9) сле $\frac{RT}{F}$ In $\frac{K}{1+K}$ + $\frac{RT}{F}$ In $\frac{\sqrt{\pi Db}}{k_{5}}$.

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

• Хронопотенциометрия

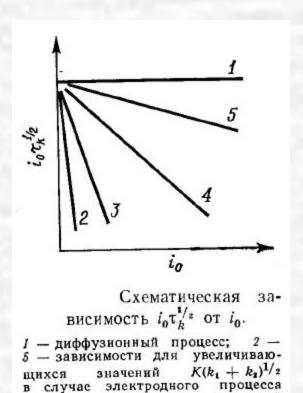
Дополнительно надо решить уравнение:

$$\left[\frac{\partial C_{\text{Ox}}}{\partial x}\right]_{x=0} = \lambda \qquad \qquad \lambda = i_0/nFD_{\text{Ox}}$$

Решение:

$$\tau_k^{1/2} = \frac{\pi^{1/2} nFD^{1/2} C^0}{2i_0} - \frac{\pi^{1/2}}{2K (k_1 + k_2)^{1/2}} \text{ erf } \left[(k_1 + k_2)^{1/2} \tau_k^{1/2} \right]$$

• Хронопотенциометрия


Для
$$(k_1 + k_2)^{1/2} \tau_k^{1/2} > 2$$
:

$$\tau_k^{1/2} = \frac{\pi^{1/2} \ nFC^0 D^{1/2}}{2i_0} - \frac{\pi^{1/2}}{2K (k_1 + k_2)^{1/2}}$$

$$\tau_k^{1/2} i_0 = \tau^{1/2} \ i_0 - \frac{\pi^{1/2} \ i_0}{2K (k_1 + k_2)^{1/2}}$$

Для
$$(k_1 + k_2)^{1/2} \tau_k^{-1/2} \le 2$$
:

$$(i_0 \tau_k^{1/2})_{\text{при } i_0 \to \infty} = \frac{\pi^{1/2} nFD^{1/2} C^0}{2\left(1 + \frac{1}{K}\right)}$$

предшествующей

реакцией первого порядка.

химической

$$A \rightleftharpoons_{k_2}^{k_1} Ox \quad K = \frac{k_1}{k_2} \quad A \rightleftharpoons_{k_2}^{k_1} Ox + ne \rightleftharpoons Red.$$

ВДЭ

Дополнительно надо решить уравнение :

$$S_{x} \frac{dC_{A}}{dx} = D \frac{d^{2}C_{A}}{dx^{2}} - k_{1}C_{A} + k_{2}C_{Ox}$$

$$S_{x} \frac{dC_{Ox}}{dx} = D \frac{d^{2}C_{Ox}}{dx^{2}} + k_{1}C_{A} - k_{2}C_{Ox}$$

Решение:

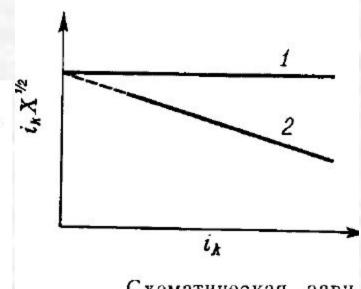
$$i = \frac{i}{\left(1 + \frac{1}{K\delta} \sqrt{\frac{D}{l}}\right) \delta}$$

$$i_k = \frac{i_g}{1 + \frac{1}{K\delta} \sqrt{\frac{D}{l}}}$$

$$i = \frac{nFDAC^{0}}{\left(1 + \frac{1}{K\delta} \sqrt{\frac{D}{l}}\right) \delta} \qquad i_{k} = \frac{DC^{0}}{1,61D^{1/3} v^{1/6} \omega^{-1/2} \left[1 + \frac{1}{1,61K} \omega^{1/2} l^{-1/2} D^{1/6} v^{-1/6}\right]}$$

$$\frac{i_k}{\omega^{1/2}} = \frac{i_g}{\omega^{1/2}} - \frac{D^{1/6} i_k}{1,61^{1/6} K (k_1 + k_2)^{1/2}}$$

Электродные процессы, контролируемые скоростью переноса заряда (необратимые системы)


• Обсуждение полученных зависимостей

Полученные уравнения можно представить в общем виде:

$$i_k X^{1/2} = Gi_g X^{1/2} - B \frac{i_k}{K(k_1 + k_2)^{1/2}}$$

Значения констант G и R

Значения констан	T G H B	
Метод	Константа <i>G</i>	Константа В
Полярография Хроновольтамперометрия	1	$\frac{1}{0,886}$
обратимый процесс	0,98	$0,462\left(\frac{nF}{RT}\right)^{1/2}$
необратимый процесс	0,98	$0.521 \left(\frac{\alpha n_{\alpha} F}{RT} \right)^{1/2}$
Хронопотенциометрия	1	$\frac{\pi^{1/2}}{2}$
Метод вращающегося диска	1	$\frac{D^{1/6}}{1,61v^{1/6}}$

Схематическая зависимость $i_k X^{1/2}$ от i_k для электродного процесса с предшествующей химической реакцией первого порядка (прямая 2). I — зависимость для диффузион-

ного процесса.