

Starter

 In the back of your book, draw a Bar Chart to show the following information;

Height (cm)	Frequency
100 < x ≤ 120	20
120 < x ≤ 140	25
140 < x ≤ 150	30
150 < x ≤ 160	25
160 < x ≤ 200	20

Starter

		JC	I	ı	1	1		
		Iner						
Height (cm)	Frequency	Frequency 52						
100 < x ≤ 120	20	20						
120 < x <u><</u> 140	25	20						
140 < x ≤ 150	30	15						
150 < x ≤ 160	25	10						
160 < x ≤ 200	20							
		5						
		0						

Problems

1) The data is continuous so there should be no gaps

2) 150 - 160 has the same height as 120 -140, even though it represents a smaller range

A Histogram will correct both of these problems!

100

120

140

160

180

Height (cm)

200

Histograms

Height (cm)	Frequency	Frequency Density
100 < x ≤ 120	20	1
120 < x ≤ 140	25	1.25
140 < x ≤ 150	30	3
150 < x ≤ 160	25	2.5
160 < x ≤ 200	20	0.5

To take into account the size of the group, we calculate 'Frequency Density'

Frequency Density	=	<u>Frequency</u> Classwidth
Frequency Density	=	<u>20</u> 4 0
	=	12355

Histograms

Heigh	nt (cm)	Frequency	Frequency Density
100 <	<mark>× </mark>	20	1
120 <	<mark>x </mark>	25	1.25
140 <	<mark>× </mark>	30	3
150 <	<mark>× </mark>	25	2.5
160 <	x <u>≺</u> 200	20	0.5
3			

Frequency Density

With a Histogram, area represents Frequency, not the height

eg) The fifth group is a rectangle measuring 20 by D.5 20 × 0.5202 sottenerer 202 peppepie in the her gapup

Histograms

Speed (mph)	Frequency	Frequency Density
<mark>0 < x ≤</mark> 40	10	0.25
40 < x ≤ 50	15	1.5
50 < x ≤ 60	18	1.8
60 < x ≤ 65	20	4
<mark>65 < x</mark>	35	7
70 < x ≤ 80	20	2

To take into account the size of the group, we calculate 'Frequency Density'

Frequency Density	=	<u>Frequency</u> Classwidth
Frequency Density	=	<u>30</u> 40
	=	01225

Histograms

Speed (mph)	Frequency	Frequency Density
0 < x ≤ 40	10	0.25
4 0 < x ≤ 50	15	1.5
50 < x ≤ 60	18	1.8
60 < x ≤ 65	20	4
65 < x ≤ 70	35	7
70 < x ≤ 80	20	2

Remember that Area represents Frequency!

Group 5 is a \$0000070.25toegtengle \$0xx70:255 = 10 So 305 people in the group

Plenary

(4)

10 (a) The table shows information about the size of eggs and percentages of eggs sold in a supermarket in the UK.

Class	ification of Eg	gs UK		
Size	Minimum weight	Maximum weight	Percentage of sales	Frequency Density
Small	33g	53 g	10	0.5
Medium	53 g	63 g	22	2.2
Large	63 g	73 g	53	5.3
Extra Large	73 g	103g	15	0.5

You may assume no eggs are less than 33 g or more than 103 g.

Draw a fully labelled histogram to show the data.

Plenary

Frequency Density

Summary

- We have learnt how to plot Histograms of sets of data
- We have seen how they are different to Bar Charts
- We have learnt what is meant by 'Frequency Density'
- We have shown that on a Histogram, area represents Frequency, not height!