MISHOgpan

Starter

- In the back of your book, draw a Bar Chart to show the following information;

Height (cm)	Frequency
$100<x \leq 120$	20
$120<x \leq 140$	25
$140<x \leq 150$	30
$150<x \leq 160$	25
$160<x \leq 200$	20

Starter

Height (cm)	Frequency
$100<x \leq 120$	20
$120<x \leq 140$	25
$140<x \leq 150$	30
$150<x \leq 160$	25
$160<x \leq 200$	20

Starter

- Problems

1) The data is continuous so there should be no gaps
2) 150-160 has the same height as 120 140, even though it represents a smaller range

A Histogram will correct both of these problems!

Histograms

Height (cm)	Frequency	Frequency Density
$100<x \leq 120$	20	1
$120<x \leq 140$	25	1.25
$140<x \leq 150$	30	3
$150<x \leq 160$	25	2.5
$160<x \leq 200$	20	0.5

To take into account the size of the group, we calculate 'Frequency Density'
$\begin{gathered}\text { Frequency } \\ \text { Density }\end{gathered}=\frac{\text { Frequency }}{\text { Classwidth }}$
$\begin{gathered}\text { Frequency } \\ \text { Density }\end{gathered}=\frac{30}{20}$
$=108$

Histograms

Histograms

With a Histogram, area represents Frequency, not the height
eg) The fifsh group is a rectranglle measuriing 20 by 0.5 20×0.5 ZO2Sosththeneewer RO2peppbplie ithehgrgapup

Histograms

Speed (mph)	Frequency	Frequency Density
$0<x \leq 40$	10	0.25
$40<x \leq 50$	15	1.5
$50<x \leq 60$	18	1.8
$60<x \leq 65$	20	4
$65<x \leq 70$	35	7
$70<x \leq 80$	20	2

To take into account the size of the group, we calculate 'Frequency Density'
$\begin{gathered}\text { Frequency } \\ \text { Density }\end{gathered}=\frac{\text { Frequency }}{\text { Classwidth }}$
$\begin{aligned} & \text { Frequency } \\ & \text { Density }\end{aligned}=\frac{80}{40}$
$=0$ OUB

Histograms

Speed (mph)	Frequency	Frequency Density
$0<x \leq 40$	10	0.25
$40<x \leq 50$	15	1.5
$50<x \leq 60$	18	1.8
$60<x \leq 65$	20	4
$65<x \leq 70$	35	7
$70<x \leq 80$	20	2

Histograms

Remember that Area represents Frequency!
Group 5 iiss a 50 blyy 70 .EEtragtangle
50x70.255=10
So BS preopple iirm Nthee grroup

Plenary

10 (a) The table shows information about the size of eggs and percentages of eggs sold in a supermarket in the UK.

Classification of Eggs UK			
Size	Minimum weight	Maximum weight	Percentage of sales
Frequency Density			
Small	33 g	53 g	10
Medium	53 g	63 g	22
Large	63 g	73 g	53
Extra Large	73 g	103 g	15

You may assume no eggs are less than 33 g or more than 103 g .

Draw a fully labelled histogram to show the data.

Frequency Density

Egg Weight (g)

Summary

- We have learnt how to plot Histograms of sets of data
- We have seen how they are different to Bar Charts
- We have learnt what is meant by 'Frequency Density'
- We have shown that on a Histogram, area represents Frequency, not height!

