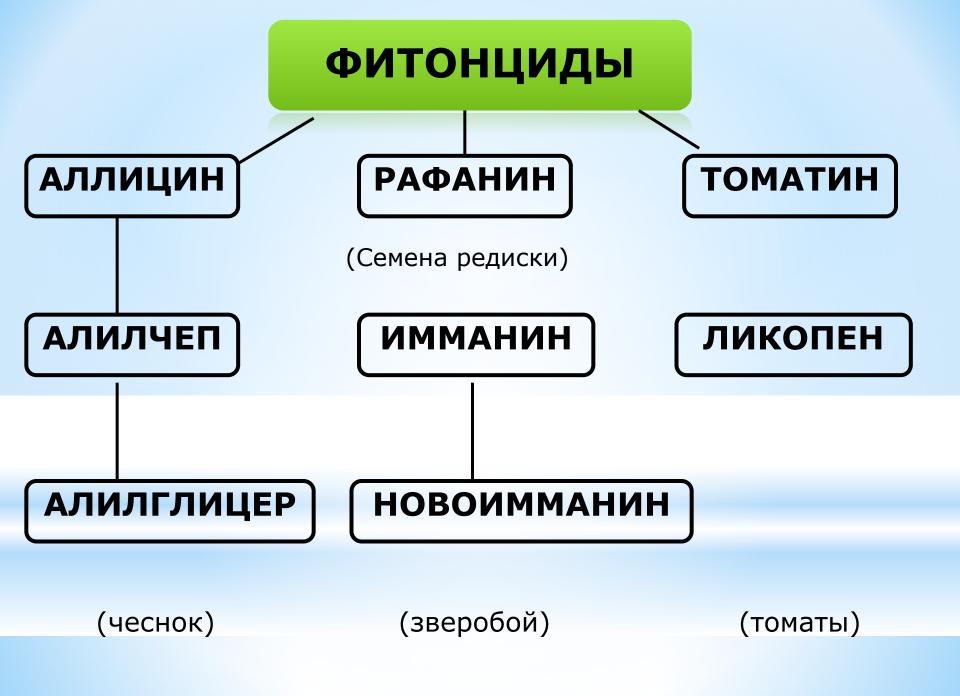


Александр Флеминг – открытие пенициллина, 1929 год.

Рост колоний плесневых грибов

Зинаида Виссарионовна Ермольева руководитель лаборатории, в которой был получен первый отечественный антибиотик (1943)




Зельман Ваксман Лауреат Нобелевской премии по физиологии и медицине (1952) за "открытие стрептомицина, первого антибиотика, эффективного при лечении туберкулеза".

Антибиотики-

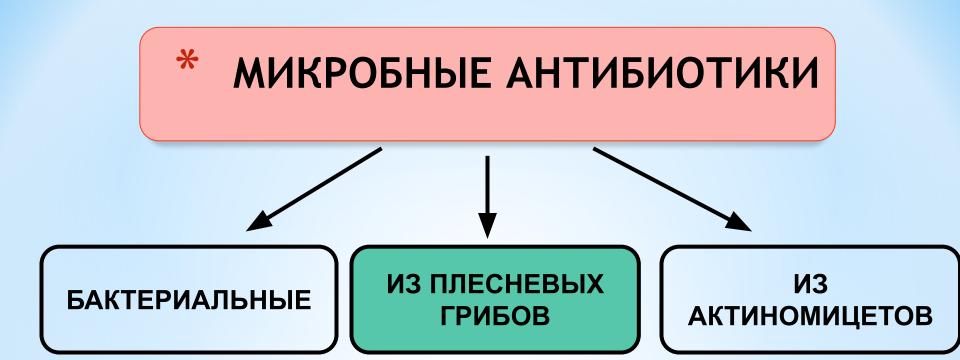
продукты жизнедеятельности живых организмов или их синтетические аналоги, способные избирательно подавлять жизнедеятельность других живых организмов и опухолевых клеток

* КЛАССИФИКАЦИЯ АНТИБИОТИКОВ ПО ПРОИСХОЖДЕНИЮ

АНТИБИОТИКИ ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

ЛИЗОЦИМ

ЛАКТОФЕРРИН (ГЛИКОПРОТЕИН)


ЭКМОЛИН

ДЕФЕНСИНЫ

(КАТИОННЫЕ ПЕПТИДЫ)

ИНТЕРФЕРОН

ТРОМБОЦИТАРНЫЙ БЕЛОК (β-ЛИЗИН)

ГЕНТАМИЦИН ПОЛИМИКСИН **М** ГРАМИЦИДИН **С**

ПЕНИЦИЛЛИНЫ ЦЕФАЛОСПОРИНЫ ГРИЗЕОФУЛЬВИН ЭРИТРОМИЦИН ТЕТРАЦИКЛИН СТРЕПТОМИЦИН НИСТАТИН

СИНТЕТИЧЕСКИЕ И ПОЛУСИНТЕТИЧЕСКИЕ АНТИБИОТИКИ

ПОЛУСИНТЕТИЧЕСКИЕ

пенициллины цефалоспорин тетрациклин

6 AПК

7 АЦК

СИНТЕТИЧЕСКИЕ

левомицетин нитрофураны производные оксихинолона (5-НОК, оксихинолин)

ДЕЙСТВИЕ АНТИБИОТИКОВ НА МИКРОБНУЮ КЛЕТКУ

АНТИБИОТИК

Губительное

БАКТЕРИОСТАТИЧЕСКОЕ ДЕЙСТВИЕ

> БАКТЕРИЦИДНОЕ ДЕЙСТВИЕ

БАКТЕРИОЛИТИЧЕСКОЕ ДЕЙСТВИЕ Изменяющее свойства

АНТИБИОТИКО- РЕЗИСТЕНТНОСТЬ

АНТИБИОТИКОЗАВИ-СИМЫЙ ЭФФЕКТ

АНТИБИОТИКО-МОДУЛИРУЮЩИЙ ЭФФЕКТ

ДЕЙСТВИЕ АНТИБИОТИКОВ НА МИШЕНИ В КЛЕТКЕ

КЛЕТОЧНАЯ СТЕНКА

ПЕНИЦИЛЛИНЫ ЦЕФАЛОСПОРИНЫ

ЦПМ

ПОЛИМИКСИНЫ ГРАМИЦИДИН ПОЛИЕНЫ

РИБОСОМЫ

МАКРОЛИДЫ ТЕТРАЦИКЛИНЫ ЛЕВОМИЦЕТИН АМИНОГЛИКОЗИДЫ

НУКЛЕИНОВЫЕ КИСЛОТЫ

РИФАМПИЦИН НОВОБИОЦИН

КЛАССЫ АНТИБИОТИКОВ ПО СТРУКТУРЕ И МЕХАНИЗМУ ДЕЙСТВИЯ

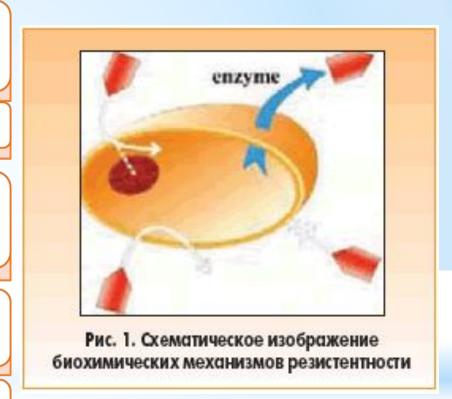
Название	Структура	Источник получения	Механизм и спектр действия	Препараты	Побочный эффект
β-лактамы	В молекуле 4-х членное кольцо – β –лактамы	Penicillium, Cephalosporium Pseudomonas	Бактерицидный, «Гр+»; Подавление синтеза пептидогликана	Метициллин, ампициллин, карбенициллин, цефалотин, цефазолин	Аллергические реакции
Полипептидные антибиотики	Аминокислотные цепи, замкнутые в кольцо	Bacillus Streptomyces	Бактериоцидный, «Гр-», «Гр+», карцинома, цитоплазматическая мембрана	Полимиксины, грамицидин, блеомицин, бацитрацин	Токсичность
Аминогликозиды	Циклический <u>амино</u> спирт + амино <u>сахара</u>	Streptomyces Micromonospora Bacillus	Бактерицидный, ТБЦ «Гр+»; подавление синтеза белка на рибосомах	Стрептомицин, канамицин, неомицин,	Ото- и нефротоксич- ность
	амино <u>сахара</u>	Daemus	ocika na photeomax	гентамицин, сизомицин, тобрамицин	пость
Тетрациклины	4 — конденсированны х кольца	Streptomyces	Бактериостатический, «Гр+», «Гр-», риккетсии, нарушение синтеза белка на рибосомах	Хлортетрациклин, морфоциклин, окситетрациклин	Дисбактериоз, гепатотоксич- ность, лекарственная устойчивость
Макролиды	Лактонное кольцо из 12-16 атомов «С»	Streptomyces	Бактериостатистический, «Гр+», грибы, подавление синтеза белка	Эритромицин, олеандомицин, левомицетин	Диспептичес- кие расстройства
Анзамицины (анза-ручка)	Алифатическая цепь, соединя- ющая 2 кольца (нафталановое – бензольное)	Actinomyces	Подавление РНК – полимеразы, ТБЦ «Гр+», опухоль	Рифампицин, рифамид, новобиоцин	Аллергические реакции

ОСЛОЖНЕНИЯ ПРИ АНТИБИОТИКОТЕРАПИИ

ТОКСИЧЕСКОЕ ДЕЙСТВИЕ

ДИСБАКТЕРИОЗ

АЛЛЕРГИЧЕСКИЕ РЕАКЦИИ **ЛЕКАРСТВЕННАЯ УСТОЙЧИВОСТЬ**


ИММУННАЯ СУПРЕССИЯ

ПРЯМАЯ

КОСВЕННАЯ

Механизмы антибиотикорезистентности

- 1. Модификация мишени действия.
- 2. Инактивация антибиотика.
- 3. Активное выведение антибиотика из микробной клетки.
- 4. Нарушение проницаемости внешних структур микробной клетки.
- 5. Формирование метаболического «шунта».

Принципы рациональной антибиотикотерапии

- Определение показаний к применению антибиотика только врач!
- Выбор АБ по спектру действия
- Выбор дозы
- Кратность введения
- Длительность применения
- Сочетание антибиотиков с разными точками

приложения

• Индивидуальная антибиотикограмма

Эубиотики

Лекарственные препараты, приготовленные на основе живых представителей нормальной микрофлоры организма человека. Направлены на коррекцию и нормализацию микроэкологических нарушений. Используются для лечения и профилактики дисбиозов.

Благодарю за внимание