Chapter 7

Photosynthesis: The Light Reactions

Outline

- History and intro
- Properties of light and pigments
- Light-dependent reactions
 - photosystem II and I
 - ATP synthesis
- Light-independent reactions
 - Calvin cycle
 - Rubisco and photorespiration
 - CAM and C₄ plants
- Physiological and ecological considerations
 - light
 - plant anatomy
 - plant responses
 - excess light and photoinhibition
 - greenhouse effect and consequences

History

- 1600's van Helmont soil alone does not nourish plant
- 1700's Priestley plants restore air from burning candles
- 1700's Ingenhousz only green parts of plants restore air, suggests CO₂ split to release O₂

1931 van Niel - Ps in purple sulfur bacteria produced S₂ instead of O₂ during Ps thus proposed O₂ released from Ps

comes from H₂O, not CO₂

1937 Hill - isolated chloroplasts produced O₂ w/o CO₂ confirming O₂ released from Ps comes from H₂O, not CO₂

• 1905 Blackman - Ps composed of light-dep. + light-indep. rxns, enzymes involved

Intro

- Photosynthesis (Ps) = process by which plants convert sunlight into chemical Σ , how Σ enters biosphere
 - chemical Σ used to convert water and CO₂ into sugars, O₂ is produced as byproduct

$$6 CO_2 + 6 H_2O \rightarrow C_6H_2O_6 + 6 O_2$$

Consists of light-dependent + light-independent rxns

Intro

- Light-dependent rxns (a.k.a) light rxns, thylkoid rxns, light-transduction rxns
 - require light, occur on thylakoid membranes
 - split water (oxidize water to O₂)
 - produce NADPH, ATP (via PMF)
 - uses 2 photosystems
- Light-independent rxns (a.k.a) dark rxns, carbon fixation rxns, stroma rxns, Calvin cycle
 - don't require light, occur in chloroplast stroma
 - use ATP, NADPH
 - produce reduced carbon cmpds (i.e. glucose) from CO₂
- Ps primarily occurs in leaf mesophyll cells
 - mesophyll contains lots of chloroplasts

Properties of Light

- Light travels in waves
 - wavelength (λ) = distance btwn 2 crests
 - frequency (v) = # of wave crests that pass a pt in a given time $c = \lambda v$ where: c = wave speed, $c_{\text{light}} = 3.0 \times 10^8 \text{ m s}^{-1}$
- Light composed of particles of Σ (photons)
 - Σ contained in discrete packets (quantum)
 - Σ of photon inversely proportional to frequency

```
E = hv where: v = frequency of light

h = Planck's constant =

6.626 \times 10-34 \text{ J s}
```


Properties of Light

- Electromagnetic spectrum = entire range of radiation
 - visible spectrum = what we can see
 - each wavelength has particular amnt Σ
 - shorter wavelength = ↑ Σ (violet)
 - longer wavelength = ↓ Σ (red)
 - UV has ↑ Σ, infared has ↓ Σ

Properties of Light

- Absorption spectrum = amount of light Σ absorbed by a substance as a func. of wavelength
 - chlorophyll a absorbs blue (430 nm) and red (660 nm) portion of spectrum
 - other pigments extend Ps useful portion of spectrum

Quantum Efficiency vs Energy Efficiency

- Quantum efficiency = fraction of absorbed photons that engage in photochemistry = 100%
 - energy efficiency = fraction of absorbed Σ that is stored as chemical products = 27%
 - other 73% converted to heat
 - of the 27%, most is used for R_m

Pigments

- Pigment = substance that absorbs photons of light
 - photon hits pigment it can be absorbed, transmitted or reflected
 - we see transmitted or reflected
 - pigments absorb specific wavelengths of light = absorption spectrum
 - pigment absorbs all wavelengths in visible spectrum = black
 - pigment absorbs green and blue wavelengths but transmits or reflects red wavelengths = red (750 nm)
 - chlorophyll = reflects green, absorbs violet, blue and red
- Action spectrum = effectiveness of wavelengths

Pigments

- When photon hits pigment, e⁻ bumped to higher orbital (↑ potential Σ b/c further from nucleus) (excited state)
 - once e⁻ in higher orbital (unstable) it has 4 fates
 - re-emit photon and fall back to original position (florescence and heat)
 - convert Σ to heat
 - transfer Σ to another chlorophyll until reaches reaction center (a.k.a. resonance energy transfer)
 - transfer Σ to other chemical rxns in ETS

Pigments

- All Ps pigments found in chloroplast
 - primary photosynthetic pigment = chlorophyll a
 - must have chl. a
 - ring structure w/ Mg
 - similar to hemoglobin
 - hydrophobic tail embedded in thylakoid membrane
 - chl. b, carotenoids and phycobilins are accessory pigments
 - accessory pigments = not directly involved in Σ transduction, pass Σ to chl. a which transforms it to chemical Σ, extend useful spectrum, antioxidant func.
 - carotenoids = red/orange/yellow, embedded in thylakoid, fall color
 - 2 types carotenoids carotene and xanthophyll

Chlorophyll a

Anatomy

- Ps occurs in chloroplast
 - double-membrane, DNA, RNA, ribosomes

- chlorophyll embedded (light-dep. rxns)
- stroma (light-indep. rxns)
- grana lamellae (PS II)
- stroma lamellae (PS)
- granum
- lumen

Overview of Photosynthesis

- 2 main events of Ps (+50 rxn steps in Ps discovered)
 - light-dependent rxns
 - light Σ transferred to chemical bond in ADP and reduction of NADP⁺, forming ATP and NADPH
 - thylakoid membranes
 - light-independent rxns
 - ATP used to link CO₂ to organic molecule
 - NADPH used to reduce to simple sugar
 - carbon or CO₂ fixation = conversion of CO₂ into organic cmpds
 - stroma

Antenna Complex and Reaction Center

- Most pigments serve as antenna
 - antenna collect light and transfer its Σ to reaction center
 - antenna complex = group of antenna molecules
 - means of increasing efficiency
 - integral proteins
 - reaction center complex = Σ is stored by transferring
 - e⁻ from chlorophyll to e⁻ acceptor (REDOX rxns)
 - e⁻ boosted to higher orbital
 - integral proteins

Photosystems I and II

- Enhancement effect = Ps rate greater w/ red and far-red light together than w/ each separate
 - due to 2 photochemical complexes (photosystem I and II)
 - work in conjuction, independent antenna and rxn centers
 - linked by electron transport chain
- e^- flow = $H_2O \rightarrow PS II \rightarrow PS I \rightarrow NADP^+ (Z scheme)$
- PSII chl. $a = P_{680}$ (red) vs PSI chl. $a = P_{700}$ (far-red)

Photosystems I and II

- PS I and II spatially separated on thylakoid membrane
 - PS II on grana lamellae
 - PS I on stroma lamellae
 - ETC that connects PSII to PSI found throughout
 - PSII produces
 - 4 photons + $2H_2O \rightarrow 4 H^+ + 4e^- + O_2$ (photolysis)
 - H⁺ released in lumen
 (H⁺ gradient)
 - increases efficiency b/c
 pool of reducers vs having
 to associate w/ single PS

Photosystem II

- Photon absorbed by PS II
- e⁻ in P₆₈₀ (chlorophyll) gets excited (P₆₈₀*)

- e⁻ passed from P₆₈₀* to Pheo (pheophytin)
 - e⁻ acceptor similar to chlorophyll but lacks a Mg, instead 2 H
 - P₆₈₀ is oxidized as looses e⁻ to pheophytin
 - **NOTE:** P_{680} re-reduced by Y_z who got e^- from splitting (oxidation) water this is where O_z comes from!!! 4 photons + $2H_2O \rightarrow 4 H^+ + 4e^- + O_z$ (photolysis)
 - occurs in lumen (contributes to H⁺ gradient (PMF) across thylakoid membrane)

Photosystem II

- e⁻ passed from Pheo to Q_A and Q_B (plastoquinones/PQ)
 - as e⁻ passed by Q_A and Q_B,
 H⁺ pumped into thylakoid
 lumen thereby creating H⁺ gradient (PMF) across thylakoid membrane
- e⁻ passed from PQ to cytochrome b₆f complex
 - large multisubunit protein w/ heme groups
- e⁻ passed from b₆f complex to plastocyanin (PC)
 - protein w/ copper
- e⁻ passed from PC to P₇₀₀ (PS II)

Plastoquinone

Photosystem I

- e⁻ passed to P₇₀₀ (reduced) from PC in PS II
- Higher P₇₀₀*

 ETC NADP+ + H+

 Fd NADPH

 Lower 700
- Photon absorbed by reduced P₇₀₀
- e⁻ in P₇₀₀ gets excited (P₇₀₀*)
- e⁻ passed from P₇₀₀* to A₀ (chlorophyll?) to A₁ (phylloquinone, a.k.a. vitamin A)
- e⁻ passed from A₁ to FeS₂ to FeS₂ to FeS₂ (Fe-S proteins)
- e⁻ passed from FeS_B to Fd (ferredoxin) (Fe-S protein)
- Ferredoxin/NADP⁺ reductase (FNR) txf e⁻ and H⁺ to NADP⁺ to form NADPH
 - NADPH highly reduced, used to reduce CO₂ in Calvin Cycle
 - occurs in stroma

Noncyclic Photophosphorylation

- Z-scheme used to describe how PS I and II interact
- Noncyclic photophosphorylation (uses light to produce ATP)
 - what we've covered so far
 - 2 photons from each photosystem = 1 NADPH and 10
 - products go to Calvin Cycle
 - $H_2O + NADP^+ \rightarrow NADPH + H^+ + \frac{1}{2}O_2$
 - $6 e^{-} = 6 ATP + 6 NADPH$

Cyclic Photophosphorylation

- Cyclic photophosphorylation when extra ATP needed
 - PS I donates e⁻ to back to PS II resulting in productional ATP (no NADP)
 - e⁻ txf via PQ
 - PS II generates ATP only
 - PS I generates NADPH

ATP Synthesis

- ATP produced via chemiosmosis = ion conc. differences and electric potential differences across membrane are source of free Σ that can be harnessed to do work
 - 2^{nd} law of thermodynamics = any nonuniform distribution of matter or Σ represents a source of Σ
- ATP synthase (a.k.a. ATPase, CF₀-CF₁) uses PMF to generate ATP
 - H⁺ in thylakoid lumen = electrochemical gradient
 - due to splitting of H_2O , cytochrome b_6f complex
 - pH in stroma = alkaline, pH in lumen = acidic
 - gradient drives ATP synthesis via ATP synthase complex

ATP Synthesis

 ATP synthase consists of hydrophobic portion CF₀ (in membrane) and CF₁ (sticks out in stroma)

found on stroma lamellae and edge of grana of thylakoid

membrane

CF₀ contains channel which H⁺ pass

rotates along w/ internal stalk

- CF₁ where ATP synthesized
- when H⁺ pass potential energy converted to kinetic
- kinetic Σ converted to chemical bone
- 4 H⁺ translocated per ATP

Summary

- 4 major protein complexes
 - PS II oxidizes H₂O, releases H⁺ into lumen
 - b₆f complex pumps additional H⁺ into lumen
 - PS I reduces
 NADP⁺ to NADPHOMA
 - ATP synthase produces ATP

- initial acceptor?
- final donor??

Summary II

Repair and Regulation

- Regulatory and repair mechanisms needed to safely dissipate excess Σ or repair if damaged
 - carotenoids dissipate excited state of chlorophyll
 - excited state can react w/ O₂ to
 produce singlet oxygen (extremely reactive, damaging to lipids)
 - xanthophylls (type of carotenoid) also help dissipate Σ and heat
 - prolonged photoinhibition (inhibition of Ps by excess light) = damage to PS II rxn center, esp. D1 protein
 - D1 protein removed and replaced

Chloroplast Genetics

- Chloroplast have their own DNA, mRNA, ribosomes
 - import some genes from nucleus
 - circular DNA
- Reproduce via division
 - chloroplasts divided btwn daughter cells
 - chloroplasts come from female plant
 - non-Mendelian genetics, maternal inheritance

Endosymbiosis

- Chloroplast is semiautonomous
 - own DNA, mRNA, ribosomes
 - descendant of symbiotic relationship btwn cyanobacteria and nonphotosynthetic eukaryotic cell (endosymbiosis)
 - genetic information lost thus needs host