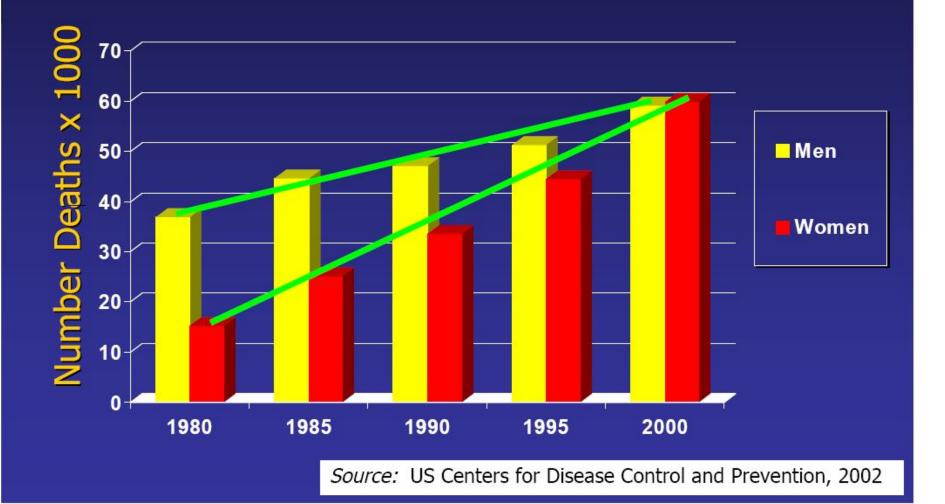
Chronic Obstructive Pulmonary Disease (COPD)

THE Guideline

Global Initiative for Chronic Obstructive Lung Disease (GOLD), World Health Organization (WHO), National Heart, Lung and Blood Institute (NHLBI)

Definition of COPD

- COPD is a preventable and treatable chronic lung disease characterized by airflow limitation that is not fully reversible
- The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gases, primarily caused by cigarette smoking
 Although COPD affect the lungs, it also produces significant systemic consequences


Adapted from the Global Initiative for Chronic Obstructive Lung Disease 2007 ATS/ERS Guidelines 2004

Epidemiology of COPD 4th leading cause of death in world 4th leading cause of death in U.S.A. 3rd most common reason for hospitalization. Rare under 40, common in elderly greater in men than in women. Prevalence of 9.34/1,000 in men and 7.33/1,000 in women (Global Burden of Disease Study, 2007).

COPD includes:

chronic bronchitis chronic bronchiolitis (small air way disease) **Emphysema**

COPD Mortality by Gender, U.S., 1980-2000

COPD Prevalence

Diagnosed Estimated COPD total COPD 2.4 - 7 million 16 million 56 - 85% Undiagnosed/misdiagnosed

Risk Factors for COPD Environmental Host factors <u>factors</u> Alpha-1-antitrypsin deficiency Tobacco smoke airway hyperrespon-Occupational siveness dusts/chemicals Disordered lung Air pollution development Childhood

infections

Risk factors

cigarette smoking remains the most important. Susceptibility to cigarette smoke varies but both the dose and duration of smoking appear to be important and it is unusual to develop COPD with less than 10 pack years. (1 pack year = 20 cigarettes / day /year).

Alpha-1-antitrypsin deficiency α1-Antitrypsin is a proteinase inhibitor which is produced in the liver, secreted into the blood and diffuses into the lungs. Mechanism of action: an inhibition of proteolytic enzymes such as neutrophil elastase, which are capable of

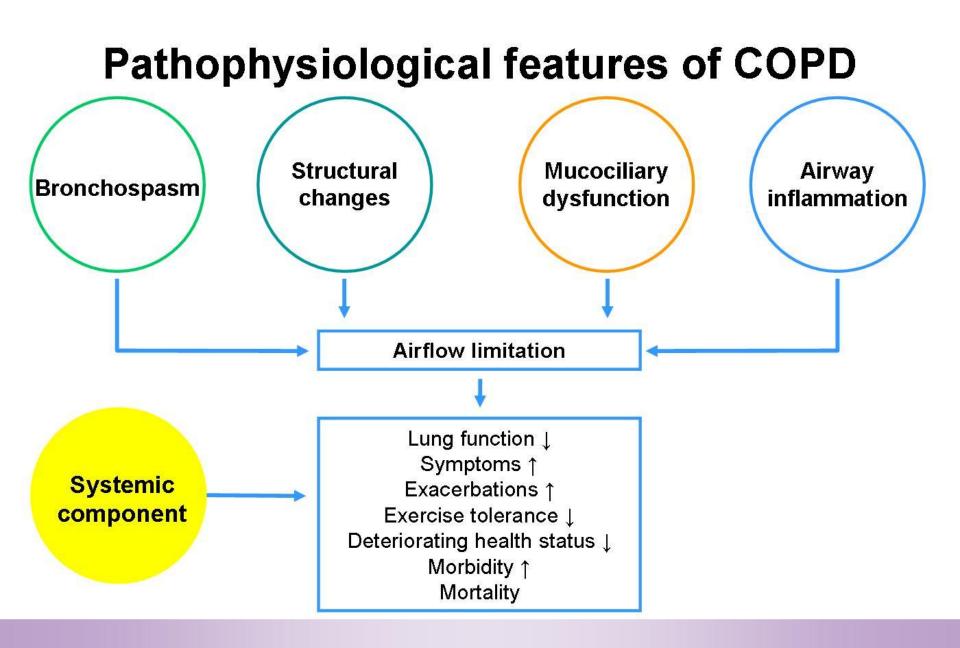
- destroying alveolar wall connective
- tissue.

COPD has both
Pulmonary components
Systemic components

Pulmonary components: Mucus secretion An enlargement of mucous secreting glands and an increasing number of goblet cells in the large airways \rightarrow increase mucous that causes chronic bronchitis

Loss of elastic tissue surrounding the smaller airways combined by inflammation and fibrosis in the airway wall → airflow limitation.

Pulmonary components:


Premature airway closure leads to gas trapping and hyperinflation \rightarrow ↓ pulmonary and chest wall compliance. (during exercise the time available for expiration shortens resulting in progressive hyperinflation)

Pulmonary components:

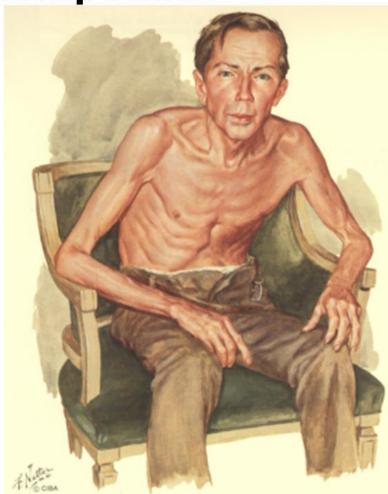
Flattening of the diaphragmatic muscles and increase horizontal alignment of the intercostals $muscles \rightarrow mechanical$ disadvantage of respiratory muscles \rightarrow increase work of breathing first on exercise but then at rest.

Pulmonary components:

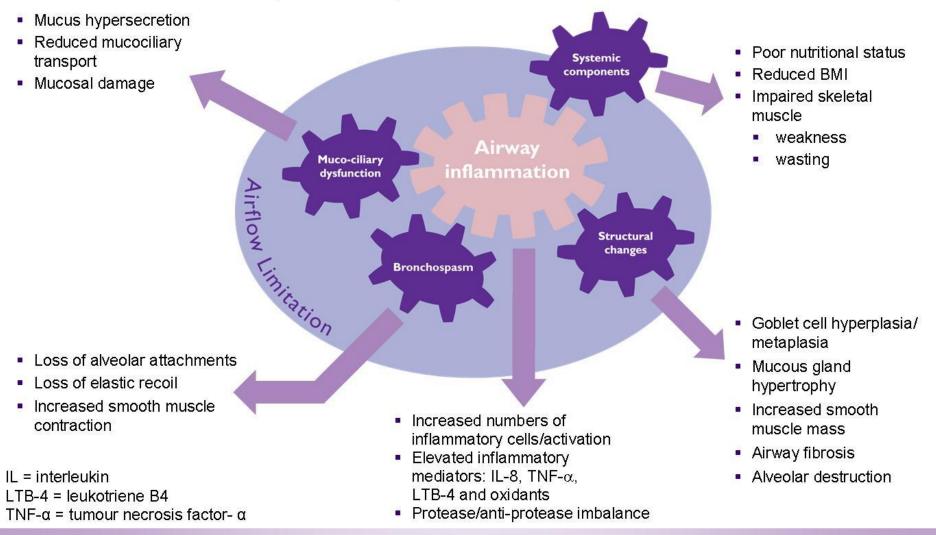
In the alveolar capillary units the unopposed action of proteases and oxidants \rightarrow destruction of the alveoli \rightarrow bullae formation in some individuals which \rightarrow impaired gas exchange and respiratory failure.

C/06/117 July 2006

Systemic components:

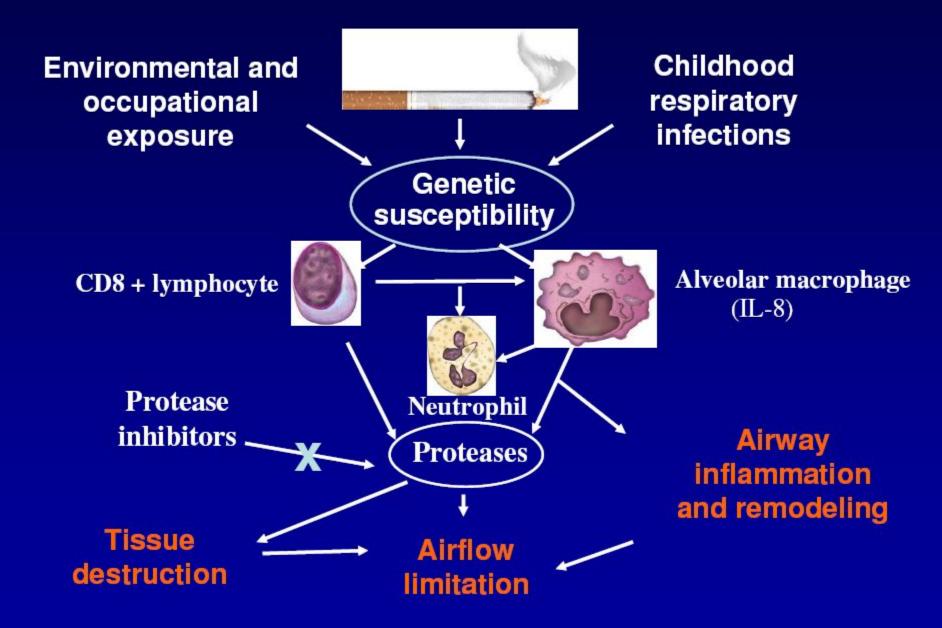

- 1. Skeletal muscle weakness.
- 2. Increase circulating inflammatory markers.
- 3. Impaired salt and water excretion leading to peripheral edema.
- 4. Altered fat metabolism contributing to weight loss.
- 5. Increase prevalence of osteoporosis.

Pathophysiology of COPD: systemic component


Systemic component

Systemic inflammation Poor nutritional status Reduced BMI Impaired skeletal muscle – weakness – wasting Impact on other organs

e.g. cardiovascular disease



Pathophysiological features of COPD

C/06/117 July 2006

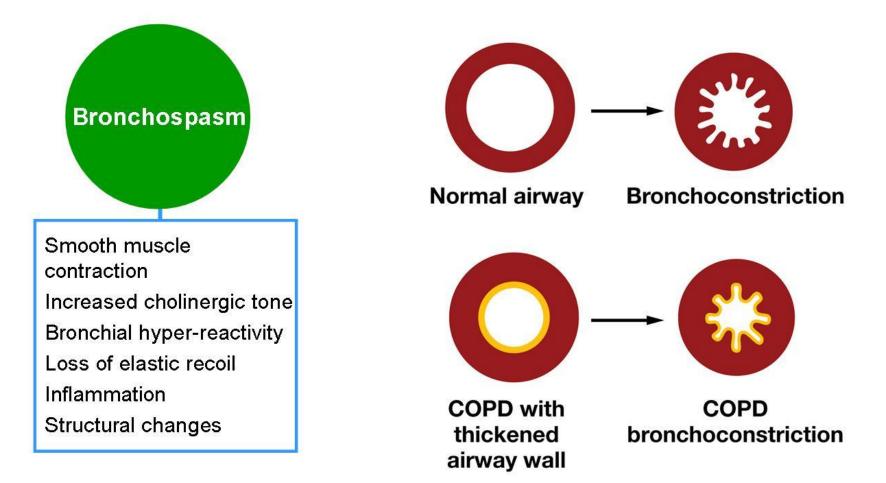
COPD Pathogenesis

Pathophysiology (conclusion)

inflammation, bronchial wall edema, mucous secretion, hyperinflation and air trapping

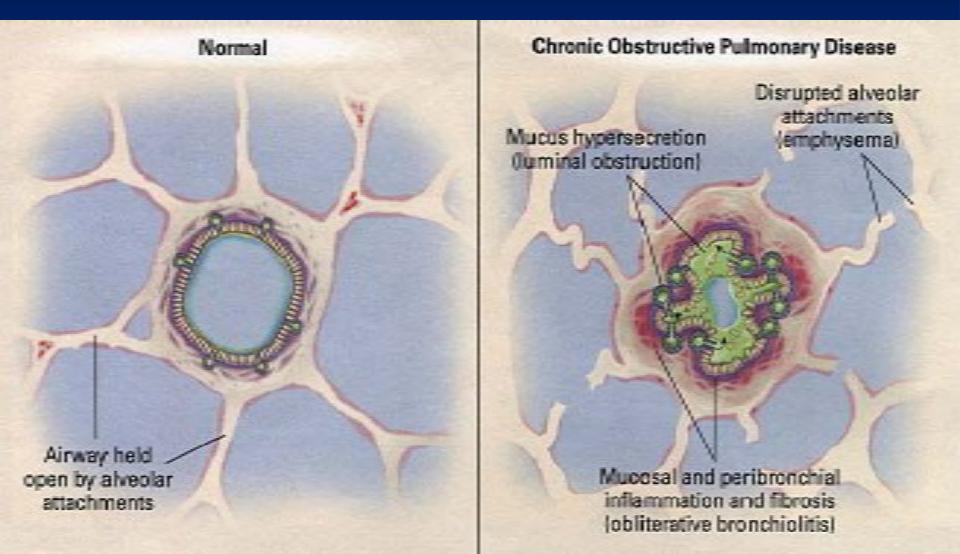
Increase in proteinases & free radicals lead to parenchymal destruction

Changes in pulmonary vasculature lead to ventilation-perfusion mismatching, pulmonary hypertension <u>cor</u> pulmonale

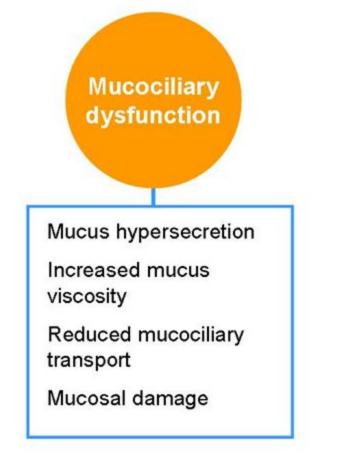

INFLAMMATION IN COPD

Small airway disease Airway inflammation Airway remodeling

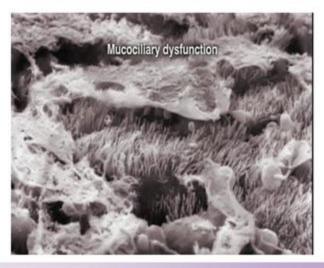
Parenchymal destruction Loss of alveolar attachments Decrease of elastic recoil


AIRFLOW LIMITATION

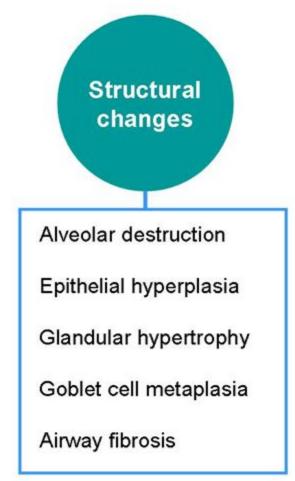
Pathophysiology of COPD: bronchospasm

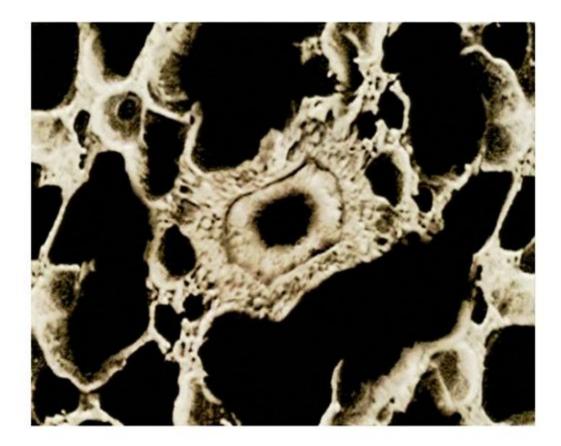



C/06/117 July 2006


COPD: Pathology

Pathophysiology of COPD: mucociliary dysfunction





Visual reproduced with permission from GlaxoSmithKline

Agusti Respir Med 2005

Pathophysiology of COPD: structural changes

Visual reproduced with permission from GlaxoSmithKline

Jeffery. Thorax 1998

Causes of Airflow Limitation

Irreversible

- Fibrosis and narrowing of the airways
- Loss of elastic recoil due to alveolar destruction
- Destruction of alveolar support that maintains patency of small airways

Reversible

- Accumulation of inflammatory cells, mucus and plasma exudate in bronchi
- Smooth muscle contraction in peripheral and central airways
- Dynamic hyperinflation during exercise

Assess for COPD:

Cough

- intermittent or daily
- present throughout day, seldom only nocturnal
- Sputum
- Any pattern of chronic sputum production
 <u>Dyspnea</u>
 - Progressive and Persistent
 - "increased effort to breathe" "heaviness" "air hunger" or "gasping"
 - Worse on exercise
 - Worse during respiratory infections

COPD:

Symptoms and Findings

- Chronic cough
- Sputum production
- Dyspnea (shortness of breath)
- Exercise Intolerance
- Fatigue
- Decreased quality of life
- Hypoxemia
- Hypercapnia

- Pulmonary hypertension
- Cor pulmonale
- Weight loss
- Effort intolerance
- Waking at night
- Ankle swelling
- Fatigue

Diagnosis of COPD

- Considered in patients with cough, sputum production, or dyspnoea +/- risk factors.
- Confirmed by <u>spirometry</u>.
 FEV1/FVC <70% + postbronchodilator FEV1 <80% of predicted value.
 A low peak expiratory flow has poor specificity for the diagnosis of COPD.

Classification of COPD

Stage 0 Stage I Stage II Stage III Stage IV

At Risk Mild Moderate Severe Very Severe

Figure 1-2. Spirometric Classification of COPD Severity Based on Post-Bronchodilator FEV ₁	
Stage I: Mild	$FEV_1/FVC < 0.70$ $FEV_1 \ge 80\%$ predicted
Stage II: Moderate	$FEV_1/FVC < 0.70$ 50% $\leq FEV_1 < 80\%$ predicted
Stage III: Severe	$FEV_1/FVC < 0.70$ 30% $\leq FEV_1 < 50\%$ predicted
Stage IV: Very Severe	FEV ₁ /FVC < 0.70 FEV ₁ < 30% predicted or FEV ₁ < 50% predicted plus chronic respiratory failure

FEV₁: forced expiratory volume in one second; FVC: forced vital capacity; respiratory failure: arterial partial pressure of oxygen (PaO₂) less than 8.0 kPa (60 mm Hg) with or without arterial partial pressure of CO₂ (PaCO₂) greater than 6.7 kPa (50 mm Hg) while breathing air at sea level.

Stage 0 At Risk

Normal spirometry

+/- Chronic symptoms (cough, sputum, production)

Stage I Mild COPD **FEV1/FVC** <70% FEV1 ≥80% predicted With or without chronic symptoms (cough, sputum production)

Stage II Moderate COPD **FEV1/FVC <70%** ■ 50% ≤FEV1 <80% predicted With or without chronic symptoms (cough, sputum production)

Stage III Severe COPD **FEV1/FVC <70%** ■ 30% ≤FEV1 <50% predicted • With or without chronic symptoms (cough, sputum production)

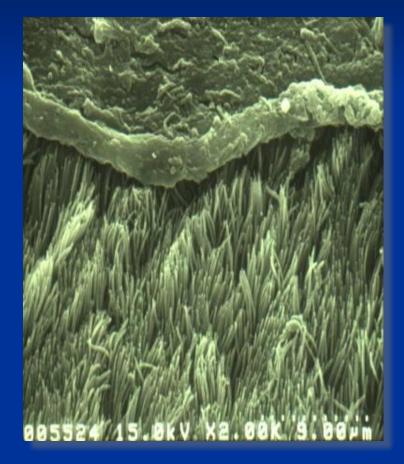
Stage IV Very Severe COPD

FEV1/FVC <70%
FEV1 <30% predicted or FEV1 <50% predicted plus
chronic respiratory failure

Spirometric Classification of COPD Severity Based on Post-Bronchodilator FEV₁

Stage I: Mild	FEV ₁ /FVC < 0.70
	$FEV_1 \ge 80\%$ predicted
Stage II : Moderate	$FEV_1/FVC < 0.70$
	50% \leq FEV ₁ < 80% predicted
Stage III : Severe	$FEV_1/FVC < 0.70$
	$30\% \leq \text{FEV}_1 < 50\%$ predicted
Stage IV : Very Severe	FEV ₁ /FVC < 0.70
	FEV ₁ < 30% predicted or FEV ₁ < 50%
	predicted plus chronic respiratory failure

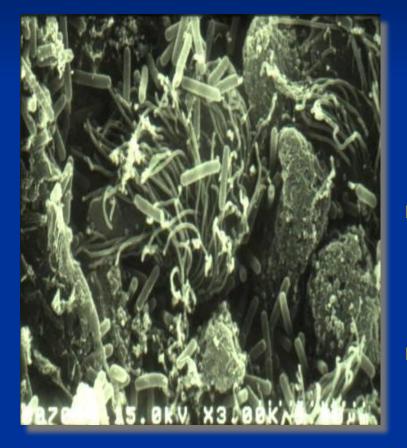
Diagnosis of COPD


SYMPTOMS cough sputum shortness of breath EXPOSURE TO RISK FACTORS

tobacco occupation indoor/outdoor pollutio

SPIROMETRY

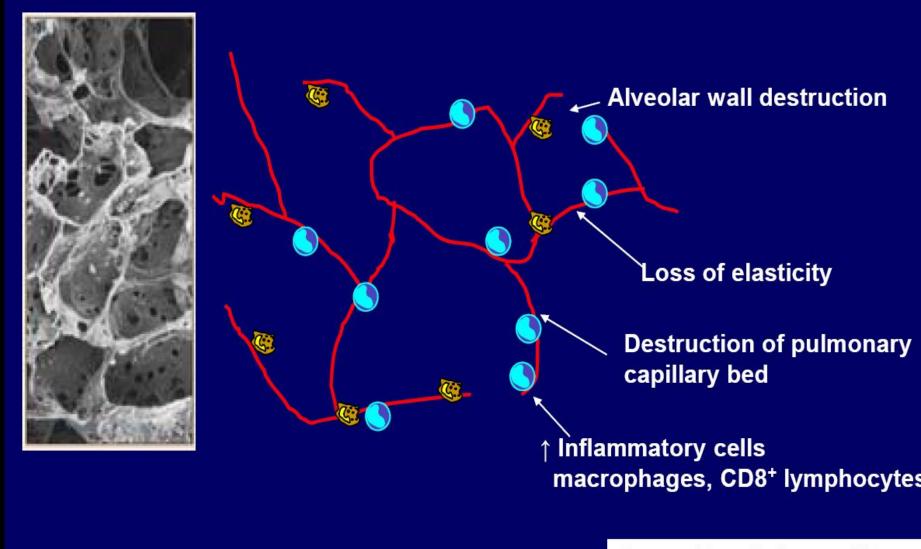
Diagnosis of COPD


Healthy Respiratory Mucosa

This electron micrograph shows the respiratory mucosa in a healthy state
The cells are fully ciliated
The cilia beat in a co-ordinated fashion to move mucus out of the airways (mucociliary transport)

Scanning electron micrograph showing a sheet of mucus being moved along by the cilia

Damaged Respiratory Mucosa



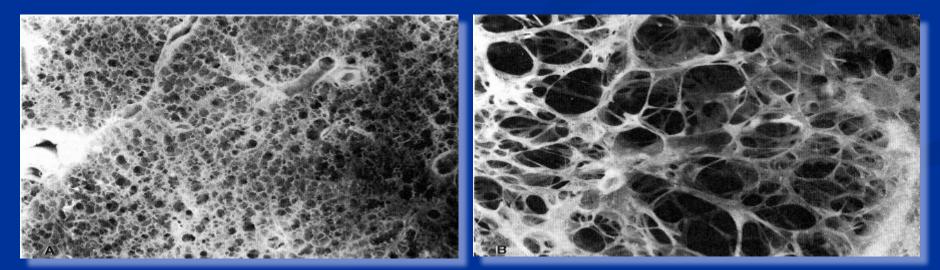
Damage to the cilia and epithelium occur as a result of disease processes in COPD. This can also occur as a result of bacterial damage This slide shows the result of bacterial infection stripping away the cilia from the mucosa The damage to the cilia means they are less effective in removing mucus from the

airways

Changes in Lung Parenchyma

Source: Peter J. Barnes, MD

smokers lung – Emphysema



Emphysema

Dilation of alveolar wall ↓ alveolar capillary network, loss of guy rope effect ↓ lung tissue elasticity Caused by smoking » irritation » inflammation » neutrophils and macrophages » release neutrophil elastase (type of proteases)

Normal Lung

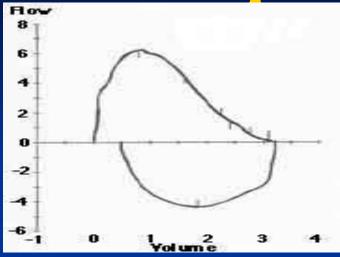
<u>Emphysema</u>

Emphysema is defined pathologically as dilatation and destruction of the lung tissue distal to the terminal bronchiole.

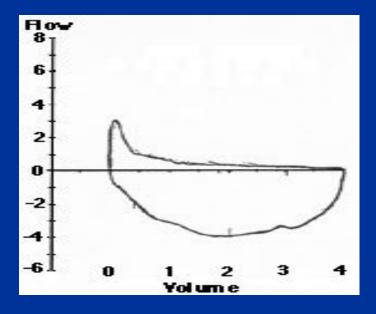
classification

Centri-acinar emphysema.
Pan-acinar emphysema.
Irregular emphysema.

Centri-acinar emphysema

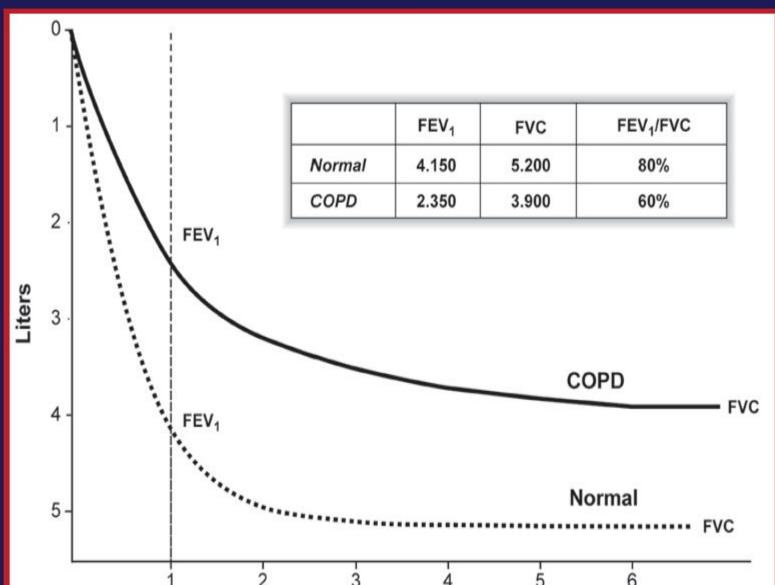

Distension and damage of lung tissue is concentrated around the respiratory bronchioles, whilst the more distal alveolar ducts and alveoli tend to be well preserved is associated with substantial airflow limitation

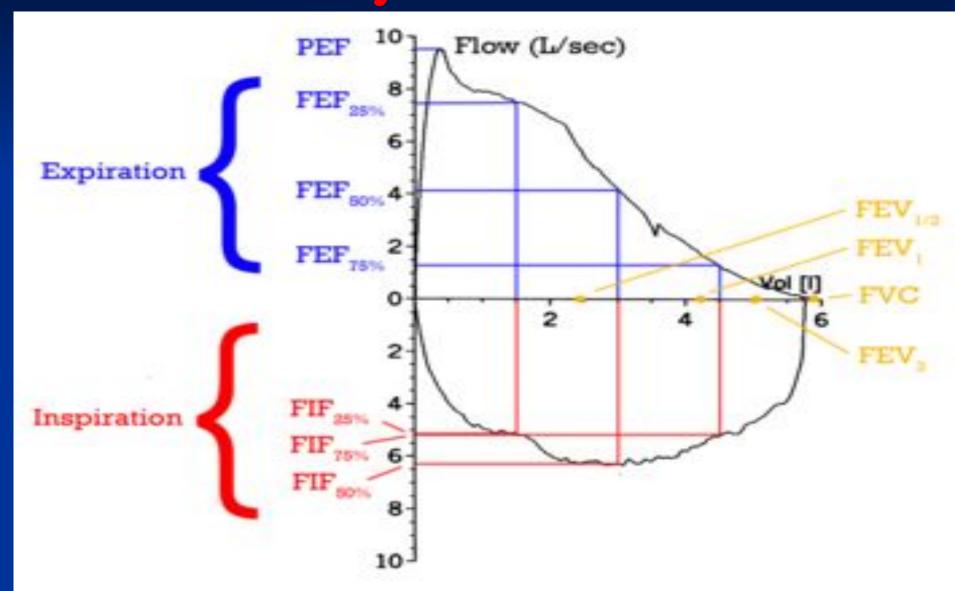
Pan-acinar emphysema


Distension and destruction appear to involve the <u>whole of the acinus</u>, and in the extreme form the lung becomes a mass of bullae.
Occurs in *α*1-antitrypsin deficiency

Irregular emphysema scarring and damage affect the lung parenchyma patchily without particular regard for acinar structure

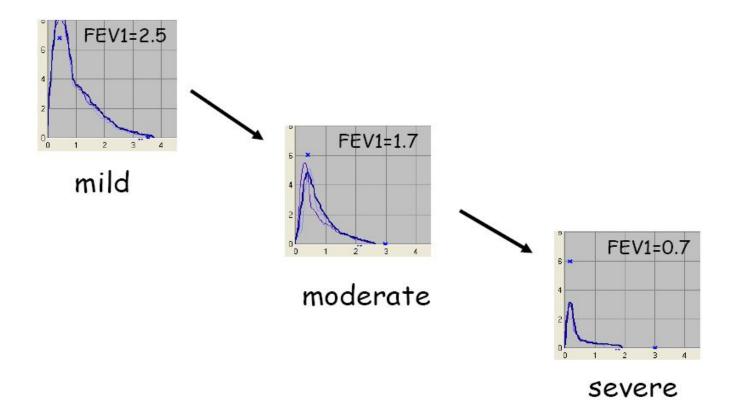
Spirometry


 Normal flow-volume loop


Flow-volume loop in severe COPD

Spirometry: Normal and Patients with COPD

Pulmonary Function Tests



Differential Diagnosis: Spirometry

FVC: the forced vital capacity, the volume delivered during an expiration FEV₁: the forced expiratory volume in 1 second FEV₁/FVC: the ratio of forced vital capacity to forced expiratory volume in 1 second

The best outcome measure depends on COPD severity

(recruiting/inclusion/exclusion criteria)

Assess:

Measure Airflow Limitation

- Patients with COPD typically show a <u>decrease in both FEV1 and FVC</u>
- Postbronchodilator FEV1 < 80% predicted + FEV1/FVC < 70% confirms the presence of airflow limitation that is not fully reversible
 FEV1/FVC < 70% is an early sign of airflow limitation in patients whose FEV1 remains normal (≥80% predicted).

Four Components of COPD Management

Global Initiative for Chronic Obstructive Lung Disease

GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

> Copyright © 2906 MCR VISION, Inc All Rights Reserved

1. Assess and monitor disease

- 2. Reduce risk factors
- 3. Manage stable COPD
 - Education
 - Pharmacologic
 - Non-pharmacologic

4. Manage exacerbations

COPD Therapy Based on Symptoms and Staging

Symptoms	Asymptomatic	Mild	Moderate	Severe	Very Severe
Staging	0 At Risk	I Mild	II Moderate	III Severe	IV Very Severe
	Avoidance of risk factor(s); influenza vaccination				
		Add short-acting bronchodilators when needed – either LABAs or anticholinergics			
		Add regular Rx c ≥ 1 long-acting bronchodilator. Add rehabilitation			
			Add inhaled corticosteroids repeated exacerbations		
					Add oxygen Consider surgery

ted by the author from the Global Initiative for Chronic Obstructive Lung Disease. Global strategies for the diagnosis, management, and prevention of chronic obstructive pulmonary disease

GOALS of COPD MANAGEMENT Relieve symptoms Prevent disease progression Improve exercise tolerance Improve health status Prevent and treat complications Prevent and treat exacerbations Reduce mortality

Avoidance/reduction of risk factors

Reduction of total personal exposure to:

- tobacco smoke
- occupational dusts
- Chemicals
- indoor and outdoor air pollutants

 Smoking cessation is the single most costeffective intervention for reducing the risk of developing COPD and stop its progression

Adapted from the GOLD Workshop Report 2001

General Points

Only smoking cessation and O2 therapy have been shown to prolong survival Other therapies aimed at relieving symptoms, improving quality of life, reducing exacerbations and need for hospitalizations

Exacerbation management
Chronic stable management
Adjuvant therapy

Therapy at Each Stage of COPD: Stages I and II

Staging	0 At Risk	I Mild	II Moderate	III Severe	IV Very Severe
		Add short-acting bronchodilators when needed – either LABAs or anticholinergics			
		Add regular $Rx c \ge 1$ long-acting bronchodilator. Add rehabilitation			

Recommendations:

1. Inhaled bronchodilators relieve, prevent, and reduce symptoms (A) Beta₂-agonists, anticholinergics, theophylline*: alone or combination

2. Long-acting bronchodilators: more effective, more convenient, more expensive (A)

3. Combining bronchodilators: may improve efficacy and decrease risk of side effects compared with increasing dose of single agent (A)

^{*} Not FDA-approved for treating COPD.

Adapted by the author from the Global Initiative for Chronic Obstructive Lung Disease. Global strategies for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2005. Retrieved August 16, 2006, from the World Wide Web: http://www.goldcopd.com/Guidelineitem.asp?l1=2&12=1&intId=989.

Management of Stable COPD Pharmacotherapy: Bronchodilators

- Bronchodilator medications are central to the symptomatic management of COPD (Evidence A). They are given on an as-needed basis or on a regular basis to prevent or reduce symptoms and exacerbations.
- The principal bronchodilator treatments are B₂- agonists anticholinergics, and methylxanthines used singly or in combination (Evidence A).
- Regular treatment with long-acting bronchodilators is more effective and convenient than treatment with short-acting bronchodilators (Evidence A).

Beta2-Agonists

Short acting B2-Agonists:

- Salbutamol (albuterol)(4-6hrs)
- fenoterol (4-6hrs)
- levalbuterol (6-8hrs)
- terbutaline(4-6hrs)

Long acting B2-Agonists (LABA) -

- Therapy for Stage 2, 3 and stages 4 of COPD.
- salmeterol (12+ hrs)
- formoterol (12+hrs)

Beta2-Agonists

- Excellent bronchodilator and quick effect.
 Therapy for all stages, mostly rescue and as needed dosing every 4 to 6 hours for shortness of breath.
- Relax airway smooth muscles by stimulation of B2- adrenergic receptors which increases cyclic AMP and produce antagonist effect to bronchoconstriction.
- Excess doses cause tremors, anxiety, tachycardia, arrhythmias, hypokalemia

Anticholinergics

Short acting Anticholinergics

- **ipratropium bromide** (6-8 hrs) now nebulised and inhaler
- oxitropium bromide (7-9hrs) in solution and inhaler
 Research brought quaternary compound of atropine

Long acting

Tiotropium inhaled (24+hrs) aerolised powder.
 ipratropium bromide/salbutamol (Combivent)
 fenoterol/ipratropium bromide (Berodual)

Anticholinergics (Tiotropium)

Block muscarinic receptors and prevent smooth muscle contraction while ↓ release of secretion from submucosal glands.
Ipratropium bromide, devoid of systemic effects, the nebulization dosage is 0.5mg every 4 hours

 Drug therapy for COPD begins with *long acting anticholinergics and beta-2 agonist bronchodilators.* These provide symptom relief but do not stop progression of the disease

Therapy at Each Stage of COPE Stage II-IV

Staging	0	I	II	III	IV
	At Risk	Mild	Moderate	Severe	Very Severe
			Add regular $Rx c \ge 1$ long-acting bronchodilator. Add rehabilitation		

Recommendation: Add pulmonary rehabilitation (

- Improves exercise capacity, quality of life
- Reduces breathlessness, hospitalization, anxiety, depression
- Include exercise training, nutrition counseling, education
- Patients at all stages may benefit from exercise training
- Minimum length is two months; longer programs are best

Stages III and IV

Staging	0	I	II	III	IV
	At Risk	Mild	Moderate	Severe	Very Severe
				Add ICS if repeated exacerbations	

Recommendations:

. Add ICS if frequent exacerbations. (A)

Reduces exacerbations, improves health status (beclomethasone*, budesonide*, fluticasone*, triamcinolone* or combination LABA + glucocorticosteroids: formoterol/budesonide*, salmeterol/fluticasone

. Oral glucocorticosteroids are <u>not</u> recommended in COPD (A)

A-approved for treating COPD.

/ the author from the Global Initiative for Chronic Obstructive Lung Disease. Global strategies for the diagnosis, management, and prevention of chronic obstructive pulmonary d eved August 16, 2006, from the World Wide Web: http://www.goldcopd.com/Guidelineitem.asp?l1=2&12=1&intId=989.

Inhaled Glucocorticoids in COP

- Improve lung function, dyspnea and health status
- Reduce exacerbations for patients with more advanced COPD and repeated exacerbations
- Combined with LABA, reduce exacerbation rates versus monotherapy with either agent
- COPD natural history <u>not</u> substantially modified (e.g., little or no change in rate of FEV₁ decline)
- As in asthma, side effects depend on dose and type

Pharmacotherapy: Glucocorticosteroids

- The addition of regular treatment with inhaled glucocorticosteroids to bronchodilator treatment is appropriate for symptomatic COPD patients with an FEV1 < 50% predicted (*Stage III: Severe COPD and Stage IV: Very Severe COPD*) and repeated exacerbations (Evidence A).
- An inhaled glucocorticosteroid combined with a long-acting β_2 -agonist is more effective than the individual components (Evidence A).

Pharmacotherapy: Glucocorticosteroids

- The dose-response relationships and longterm safety of inhaled glucocorticosteroids in COPD are not known.
- Chronic treatment with systemic glucocorticosteroids should be avoided because of an unfavorable benefit-to-risk ratio (Evidence A).

Inhaled Steroids

Front line therapy for COPD stages 3 and 4 Budenoside Nebulizer Inhaled fluticasone Inhaled triamcinolone Inhaled beclomethasone Inhaled budenoside **LABA** and budenoside mixed in inhaler

Management of Stable COPD Other Pharmacologic Treatments

- Antibiotics: Only used to treat infectious exacerbations of COPD
- Antioxidant agents: No effect of nacetylcysteine on frequency of exacerbations, except in patients *not* treated with inhaled glucocorticosteroids
- Mucolytic agents, Antitussives, Vasodilators: Not recommended in stable

Therapy at Each Stage of COPD: Stage IV

Staging	0	I	II	III	IV
	At Risk	Mild	Moderate	Severe	Very Severe
					Add long- term O ₂ if chronic respiratory failure

Recommendation: Add oxygen therapy (A)

- Increases survival in COPD
- Improves hemodynamics, hematologic characteristics, exercise capacity, lung mechanics, mental state

Goal: PaO_2 at rest to 60 mm Hg at sea level and rest or SaO_2 at \geq 90% Prescribed based on oxygen desaturation (eg, PaO_2 below 55 mm Hg) Given continuous, nocturnal, or with exercise

Treatment of Stable COPD Other Medications Chronic oral Prednisone

- Use in chronic COPD is controversial. No effect on survival. May improve symptoms and reduce hospitalizations in some patients already at maximum treatment
- Mucolytics & Expectorants
- Relives symptoms from copious, viscous secretions
 Oral Theophylline (If inhalers not sufficient) Side effects are common

Methylxanthines

- Multiple modes of action : bronchodilatation, ↑ dia-phragmatic contractility, stimulation of respiratory drive, inotropism, ↑ mucociliary clearance, and synergy with ß2-Agonists and Anticholinergics
- 5mg/kg IV over 10 to 15 min then 0.5mg/kg/hr if normal liver function
- 1mg/kg IV elevate a 2µg/ml in blood level (await blood level results before IV dose when patient on oral aminophylline)
- Lower dosing : Alcoholism, old age, chronic liver disease, CHF, fever, erythromycin. ciprofloxacin or H2-blocker

Mucokinetic Medications

- Nebulized water and saline and oral expectorants guaifenesin and saturated iodide *are of no benefit*
- Acetylcysteine cause reflex bronchoconstriction
- Clinical improvement with oral iodinated glycerol but can cause thyroid dysfunction
 Simple oral hydration is the easiest and safest agent

Treatment of Stable COPD: Home Oxygen Therapy

>15 hours/day <u>reduces mortality</u> Criteria for O2 therapy • Pa O2 \leq 55 mm Hg (O2 saturation $\leq 88\%$) at rest or during exercise or sleep <u>or</u> ■ Pa O2 < 60 mm Hg and hematocrit >52%

COPD Medications Typically Used in the US

 β₂-agonists (short-acting) Albuterol Levalbuterol Metaproterenol 	Combination short-acting β ₂ - agonist plus inhaled anticholinergic: Albuterol/Ipratropium
 β₂-agonists (long-acting) Salmeterol Formoterol 	 Inhaled Corticosteroids Flunisolide Triamcinolone Fluticasone Budesonide Mometasone
Anticholinergic (short-acting) Ipratropium bromide 	 Combination inhaled corticosteroid plus long-acting β₂-agonist Fluticasone 250 mcg/ salmeterol 50 mcg
Anticholinergic (long-acting) Tiotropium 	

Exacerbations in COPD

Etiology

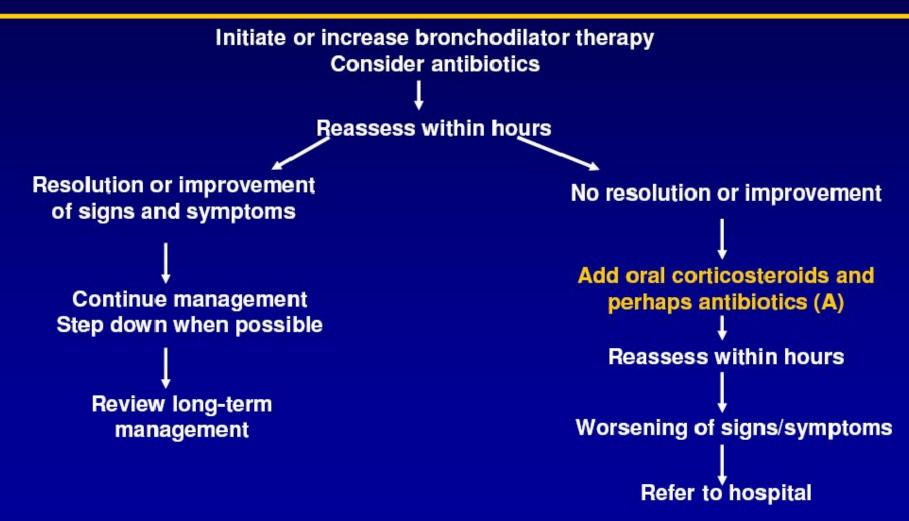
Primary

- viral and bacterial infections
- air pollution
- discontinuation of medications
- unknown reasons

Secondary

– pneumonia, pulmonary embolism, heart failure pneumothorax,

COPD Exacerbations


- Primary symptom— increased dyspnea may be accompanied by wheezing and tightening of chest, increased cough and volume of sputum, a change in the color of sputum
- Possible malaise, insomnia, sleepiness, fatigue, fever, depression, confusion
- Most commonly caused by infection of the airways and air pollution
 - Diagnosed through a targeted history and physical, spirometry, arterial blood gases or pulse oximetry

COPD Exacerbations: Indications for Hospital Assessment or Admission

- Impaired level of consciousness
- Acute confusion
- Sudden onset of resting dyspnea
- Severe COPD history
- Failure to respond to initial medical management of exacerbation

- Cyanosis or peripheral edema
- Significant co-morbiditi
- Newly occurring arrhythmias
- Uncertain diagnosis
 - Older age
- Bed confinement
- Insufficient home support

COPD Exacerbations* *Requires reassessment within hours*

Adapted by the suther from the Clebal Teltative for Oversie Obstructive Luna Disease. Clebal strategies for the disease is management, and prevention of obstructive pulmenance diseases

Managing COPD Exacerbations

Bronchodilators

- Short-acting, inhaled β_2 -agonists are the preferred treatment
- If no response, an anticholinergic is recommended
- The role of long-acting inhaled bronchodilators in conjunction with short-acting agents has not been assessed
- Use of aminophylline is controversial
- In the case of a severe exacerbation or inadequate response, methylxanthine may be considered, but requires careful monitoring

Managing COPD Exacerbations

Corticosteroids

- Used in addition to bronchodilator therapy, for the COPD patient with an exacerbation who is admitted to the hospital or who is an outpatient with significant increase in breathlessness
- Safe and efficacious dose: 30 to 40 mg oral prednisone daily for 10 to 14 days
- Long-term use not advised

Management Options for Acute Exacerbations of COPD

- Inhaled bronchodilators (beta₂-agonists and/or anticholinergics)
- In patients with signs of infection, antibiotics
- Theophylline* or aminophylline* (?)
- Systemic, preferably oral, glucocorticoids
- Oxygen
- Hospitalization
- Noninvasive positive pressure ventilation

Bronchodilators in Acute Exacerbations of COPD

- Initiate or increase dose of short-acting inhaled beta₂-agonists (e.g., albuterol*)
- Add anticholinergic (e.g., ipratropium) if no prompt response
- Role of methylxanthines (aminophylline*, theophylline*) is controversial: some benefits as third-line drug, but side effects and drug interactions
- Delivery method (nebulization or metered dose) can be individualized

^{*} Not FDA-approved for treating COPD.

Information taken from: Global Initiative for Chronic Obstructive Lung Disease. Global strategies for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2005. Retrieved August 16, 2006, from the World Wide Web: http://www.goldcopd.com/Guidelineitem.asp?l1=2&12=1&intId=989.

Antibiotics

- Have proven beneficial in treating acute infective exacerbations of COPD
 Should be used in patient with 2 or more symptoms :
- worsening dyspnea
- increased sputum volume
- increased sputum purulence

Antibiotics in Acute Exacerbations of COPD

- Traditional regimen: three to 14 days of tetracycline, amoxicillin or fluorquinolone
 Choice of agent should reflect local patterns of antibiotic sensitivity among S. pneumoniae, H. influenzae and M. catarrhalis
- Exacerbations have been linked to new strains of these organisms
- Treatment may include amoxicilin, macrolide, quinilone or tetracycline

Inpatient Treatment of Acute Exacerbations

- Oxygen to keep O2 sat >90%
 Nebulizer treatments with bronchodilators
- Steroids (40 to 60 mg daily for 7 to 14 days, IV or PO)
- Antibiotics Fluids

Mucolytic Therapy

- Mucus is a nearly universal complaint in COPD patients
- Mucolytics increase expectorations of sputum by reducing viscosity or hypersecretion
- Mucokinetic or mucoregulator agents include ambroxol, erdosteine, carbocysteine, iodinated glycerol, uridine 5'-triphosphate
- Use in COPD is controversial, not recommended in GOLD 2006 update of guidelines

Information taken from: Poole PJ, Black PN. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. BMJ 2001;322:1271-4.

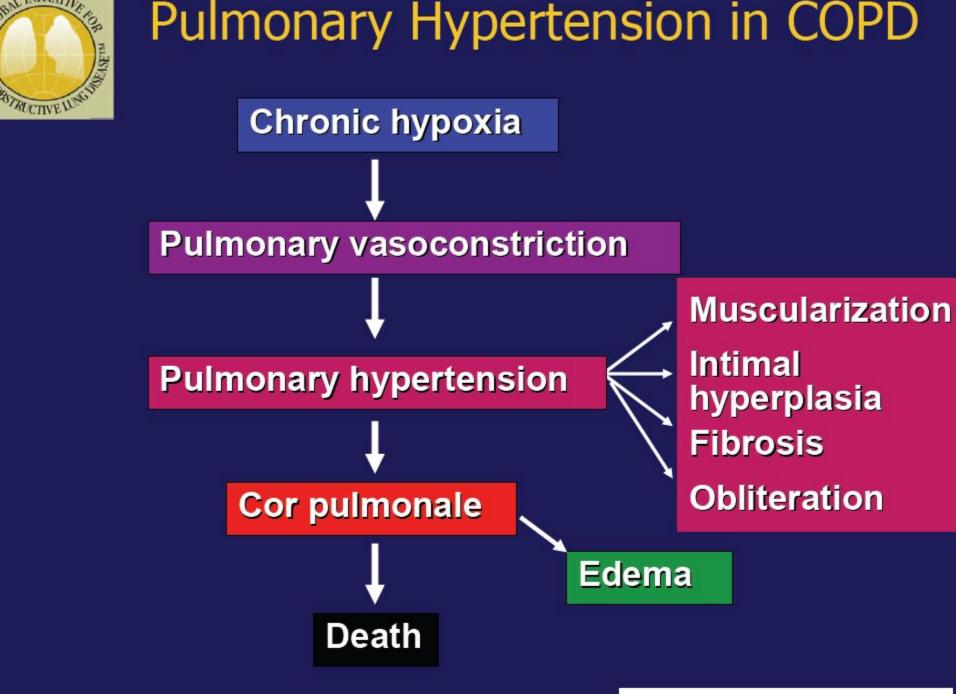
Oxygen therapy

- Generally only considered in severe (stage III) COPD patients with PaO2 <55 mmHg
- Goal: to increase PaO2 to 60 mmHg or an SaO2 of >90%
- Administration: long-term continuous therapy, during exercise, or to relieve dyspnoea
- Benefits: long-term administration (>15 h/day) increases survival, improves haemodynamics, exercise capacity, lung mechanics and mental state
- Limitations: cost of supplemental home delivery is high

Future Treatments for COPD

Phosphodiesterase-4 Inhibition (Roflumilast)

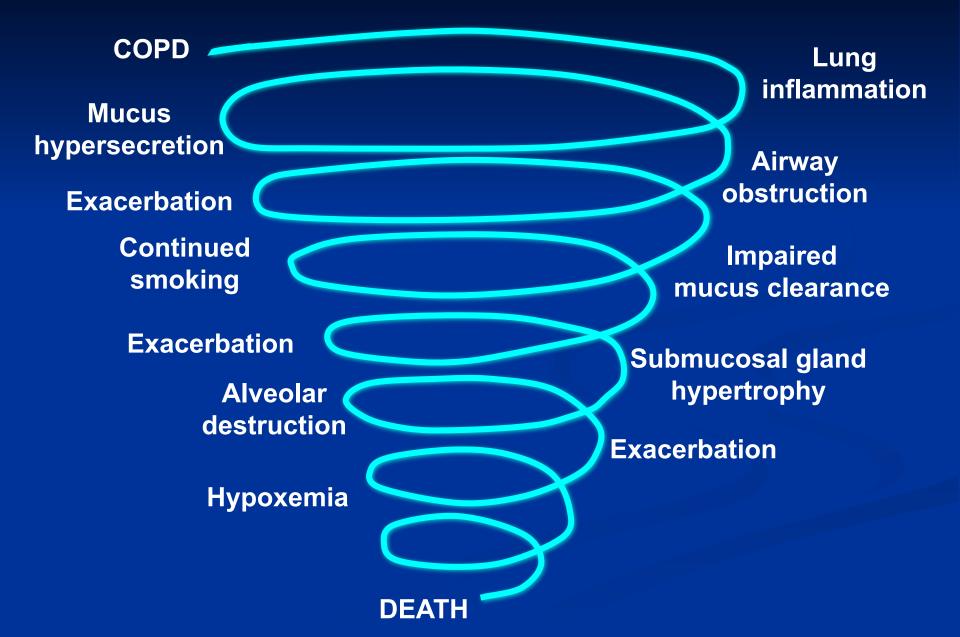
 Inhibition raises intracellular levels of cAMP resulting in downregulation of signaling pathways in inflammatory cells
 Major isoenzyme in inflammatory cells implicated in inflammatory airway disease


Roflumilast

Dosing	500µg PO once daily
Pharmacokinetics	Oral bioavailability = 79%
	Peak plasma concentration in 1hr
	Mean half-life = 17hrs
Metabolism	Metabolized by cytochrome P450 3A4 and CYP 1A2 isozymes
	Active metabolite roflumilast N-oxide, accounts for 90% of pharmacologic effect
Adverse Effects	Diarrhea, nausea, headache

PDE-4 Inhibitors

Effects on Fibroblast Activity and Tissue Remodeling


- PDE-4 inhibitors may alter fibroblast activity in damaged lungs
- Fibroblasts produce scarring and distortion associated with fixed airway obstruction
- Specific PDE-4 inhibitors cilomilast and rolipram suppress fibroblast chemotaxis
- Thus, PDE-4 inhibitors may combine bronchodilator, anti-inflammatory and tissue remodeling actions

Source: Peter J. Barnes, MD

"The Downward Spiral"

SMOKERS

"Hope and expect for the best. Prepare for the worst."

Back AL, Arnold RM, Quill TE. Hope for the best, and prepare for the worst. Ann Intern Med 2003;138:439-43.

NEXT STAGE...

PREVENT COPD

PREVENT COPD

Smoking

CURES CANCER

Then by the second of the seco