Implementation of Precision Agriculture Technology at Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

> Prof. Mikhail A. Mazirov Assoc. Prof. Valeria A. Arefieva

Turkey, Side, 2014

Precision Agriculture - Idea & Concept

• Precision Agriculture

- Sustainable agriculture
- Connected problems
 of Economy,
 Community and
 Environment

Precision Agriculture - Ideas & Modern Techniques Use

Main ideas

<u>Field mapping</u> - detailed soil maps of fields

- Crop & Biomass mapping
- <u>Crop management</u> use of fertilizers and pesticides according to the soil properties and crop needs

• Techniques

- global positioning systems (GPS); sampling machine; soil sensors
- remote sensing; NDVI-sensors; crop-meters
- variable rate applicators, spreaders and sprayers

Precision Agriculture – Actual History

- The 1990th start of precision agriculture implementations in the world;
- The 2000th wide spreading of this technology in the world: Europe, North America, Asia
- The first steps in Russia, Ukraine and Kazakhstan – 2005-2007

The number of articles on Precision Agriculture in World press*

* - according to the Central Russian Agrarian Library

Modern situation in Russia

The main centers of Precision Agriculture in Russia

- AgroPhysics Soil Institute, St.-Petersburg
- LLC "Eurotechnika", Samara
- Russian State Agrarian University

 Moscow Timiryazev Agricultural Academy

Precision Agriculture at Russian State Agrarian University – MTAA

- **2007** creation of Scientific Center of Precision Agriculture
- 2008 beginning of field experiment on adaptation of Precision Agriculture technologies

Technical device and equipment

- Navigation system GPS; Trimble
- Parallel guidance system Autopilot
- Soil-tilling and seed-drilling devi AMAZONE
- Fertilizers spreader and pesticid sprayers with dosing device AMAZONE
- NDVI-testers and sensors N-tester GreenSeeker N-sensor

Scientific Center of Precision Agriculture at Russian State Agrarian University - MTAA

Experimental field (6 ha)

4. Vetch-oat forage mixture 3. Barley

2.Potatoes

1. Winter wheat for forage

© 2010 Google © 2010 Europa Technologies © 2010 Geocentre Consulting Image © 2010 GeoEye 37°33'52 50° B. Bucota penhedra 1

121 M

Высота камеры 577 м

Google

Precision and Traditional Agriculture Plots (Factor A)

Soil Treatment (Factor B)

No-till: sod seeder AMAZONE D-3001

Next steps

- Recommended treatments for the certain areas on the basis of completed maps and data of soil and crop conditions
- Recommendations are downloaded to the board computer of tractor and machine

Tractor's task First step; GPS + GPS signal field drive by received directory GPS signal computer Signal correction Second step: Sensor's applying the right doses data \ Right on the right spot doses on a small scale Soil and crop condition ~~~ estimation Calculation for crop's needs

Navigation System at operator's cab

Benefits of Autopilot system for Precision Agriculture

- Tractor operator works hard, he can't work for a long time without breaks, he will become tired and make faults
- Autopilot system helps to do your routine task without faults
- The results of field work will be excellent: no gaps, no blank-spots, no weeds, no waste of yield

INTER ROW DISTANCE AND DEVIATION FROM INTER ROW DISTANCE OF SAWING MACHINES (2009-2013)*

* - inter row distance for D-9-30 – 12,0 cm, DMS – 18,8 cm

Сгор		Sawing mae (plou	DMC (minimum soil treatment)			
	ma	rker	auto	pilot	autopilot	
	inter row distance, cm	deviation, cm	inter row distance, cm	deviation, cm	inter row distance, cm	deviation, cm
/etch-oat mixture	-	-	13,3	+1,3	19,1	+0,3
Winter wheat	16,8	+4,8	13,8	+1,8	19,2	+0,4
Barley	15,2	+3,2	13,4	+1,4	18,7	-0,1

Scheme of potatoes planting and ridging

15-17 cm

150 cm

21

INTER ROW DISTANCE AND POSITION OF POTATOES PLANTS ON THE RIDGES IN CONNECTION WITH DIFFERENT PLANTING TECHNOLOGIES

*- inter row distance – 75 cm

Year	Year Inter row distance, cm		Position on the ridge, cm			
	marker	autopilot	marker	autopilot		
2009	6581	75 +_ 2,8	from center +_610	from center +2,8		
2010	6080	75 +_ 3,3	from center +_515	from center +3,3		
2011	7090	75 +_ 2,5	from center +_515	from center +1,5		
2012	7388	75 +_ 2,5	from center +_213	from center +1,8		
2013	7085	75 +_ 3,1	from center +_510	from center +2,3		
In average	6785	75 +_ 2,8	from center +_513	from center +2,8		

GreenSeeker –

for crops and for weeds

N-sensor ALS® Yara

N-Sensor ALS is mounted on a tractor's canopy. This system records light reflection of crops, calculates fertilisation recommendations and then varies the doses of fertilizer spreading

Sensors of Nitrogen in crops

Different aims – different equipment

N-tester® Yara GreenSeeker® RT220 N-sensor ALS® Yara

N-tester on Winter Wheat

Nitrogen balance

under different N doses

Maps of wheat biomass -NDVI measurement by GreenSeeker

Image: Note of the second se

The second half of season:

Difference between field segments

Two NDVI-measuring systems comparison (GreenSeeker – N-sensor)

Different width of working beam

Independently on NDVI-measure system maps the same data are similar

Wheat biomass map at tillering stage (EC 30 – 36)

N application at tillering stage (EC 30 – 36)

On-line N-application prescription, application map

1 – good biomass => standard N-application, dose 70 kg/ha and the same dose at traditional agriculture plots – [1]

2 – different biomass => different N-application, doses 65-80 kg/ha

3 – poor biomass => low N-application, doses <70 kg/ha

Image © 2011 GeoEye

1

Wheat Yield Map

Yield, tonne/ha

3,98	-	4,40	(0,19	ha)
3,82	-	3,98	(0,30	ha)
3,67	-	3,82	(0,42	ha)
3,43	-	3,67	(0,26	ha)
3,18	-	3,43	(0,17	ha)
2,90	-	3,18	(0,07	ha)
1,83	-	2,90	(0,02	ha)

DOZES OF HERBIZIDES RELATING NDVI PARAMETERS FOR WINTER WHEAT PLANTS

NDVI	Dozes of herbicides, mg^{-ha}			
	Differential applying	Total applying		
0,250.35	190	190		
0,250,45	160			
0,450,55	130			

APPLYING DOZES OF HERBICIDE COWBOY RELATING NDI PARAMETERS

NDVI	Doz	5 , l ^{-ha}	
	Increasing	Decreasing	Total
			consumption
> 0,30	290	410	
0,300,35	314	386	
0,350,40	338	362	
0,400,45	362	338	
0,450,50	386	314	410
0,500,55	410	290	

First step – soil mapping

 Points of soil samples taking

 (1,4 ha) to
 demonstrate
 variability of NPK
 content

Map of soil fertility was made before beginning of crop-rotation

YIELD OF THE CROPS RELATING THE VARIANTS OF SOIL TREATMENT (2009-2013)

Crop	Technology	Soil treatment	Yield, t ^{-ha}					
			2009	2010	2011	2012	2013	in average
Vetch-oat	precision	ploughing	21,3	20,5	10,8	20,6	12,1	17,1
mixtu re		"null"	25,0	19,4	9,4	27,3	14,3	19,1
Winter	precision	ploughing	4,23	4,63	3,70	6,31	6,12	5,00
whea t		"null"	5,09	4,11	3,55	6,15	5,87	4,95
	traditional	ploughing	4,28	4,50	3,65	6,52	5,80	4,95
		"null"	5,18	3,85	3,53	6,35	5,62	4,91
Potatoes	precision	ploughing	41,5	31,7	24,4	19,9	28,6	27,2
		minimal	37,5	20,7	23,2	18,3	25,9	25,1
	traditional	ploughing	38,9	24,2	24,0	19,1	27,6	26,8
		minimal	36,3	19,2	22,9	17,5	26,2	24,4
Barley	precision	ploughing	5,40	3,35	2,64	4,33	5,18	4,18
		minimal	5,78	2,99	2,83	4,20	5,00	4,16
	traditional	ploughing	5,0	3,47	2,76	4,26	5,20	4,16
		minimal	5,39	3,06	3,08	4,18	4,95	4,13

Conclusions

- The researches of five-year duration demonstrate the preference of precision agricultural technology in planting cereal crops and potatoes in the Central Region of Russia at loamy-sandy sod-podzol soils.
- The following elements and methods of precision agriculture were examined: soil characteristics mapping, autopilot for sowing and crop-tending operations, green biomass mapping with N-sensors.
- The using of optical N-sensors is effective for application of different doses of fertilizers and improving yield quality.
- Autopilot system for sowing and crop-tending operations is much effective as it allows avoiding the over-sowing and gaps.

 Researches carried out at the Scientific Centre on Precision **Agriculture of Russian State Agrarian University-Moscow Timiryazev Agricultural** Academy and presented in the above report were done within the support of Grant of the **Government of the RF Nº 11.g.** 34.31.0079

Thank You for Your attention!

Our web-site: <u>www.pole-st.ru</u> Tel: +7 499 976 11 82 E-mail: <u>pole-st@mail.ru</u>E-mail: pole-st@mail.ru <u>pole-st@timacad.ru</u>