ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Конспект лекций

Автор – доцент Рудь Виктор Васильевич

1. Элементы зонной теории твёрдого тела

Объектами исследования являются:

- элементарные частицы,
- ядра атомов,
- химические элементы,
- молекулы,
- ▶ газы,
- плазма,
- жидкие среды,
- твёрдые тела.

1.1. Модель атома и свойства электрона

 $W = h\nu \qquad (1.1)$

 $m = m_0 \left(1 - \left(\frac{v}{c}\right)^2 \right)^{-\frac{1}{2}}$ (1.2)

 $p = m_0 v \left(1 - \left(\frac{v}{c}\right)^2 \right)^{-\frac{1}{2}}$ (1.3)

Рис. 1.1

История развития представлений об атомах

СРАВНЕНИЕ СВОЙСТВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Таблица 1.1

Порядковый номер частицы і		(<i>i</i> =1)	(<i>i</i> =2)	(<i>i</i> =3)	(<i>i</i> =4)	(<i>i</i> =5)
Свойства частиц		Фотон	Электрон	Позитрон	Протон	Нейтрон
1	Электрический заряд	0	- 1	+ 1	+ 1	0
	e_i (в единицах e_i / e)					
2	Масса покоя <i>m_{oi}</i>	0	1	1	1836,15152	1838,65
	(в единицах m_{oi} / m_{oe})					
3	Собственный момент	1	1/2	1/2	1/2	1/2
	количества движения					
	проекция спина - $p_s = s$					
4	Собственный магнит-	0	-1,0011596567	1,0011596567	2,7928456	-1,913148
	ный момент - μ_s					

Универсальные физические постоянные микромира

8. Электрическая и магнитная постоянные

$$\begin{split} \varepsilon_0 &= \frac{10^7}{4\pi c^2} = 8,85418782 \cdot 10^{-12} \, \varPhi_M' \,, \\ \mu_0 &= 4\pi \cdot 10^{-7} = 1,25663706 \cdot 10^{-6} \, \varGamma H_M' \,. \end{split}$$

$$\begin{aligned} \Delta x \cdot \Delta p_{x} \geq h, \\ \Delta y \cdot \Delta p_{y} \geq h, \\ \Delta z \cdot \Delta p_{z} \geq h; \end{aligned} \} (1.6) \\ r_{\beta} = r_{0}A^{\frac{1}{3}} = (1, 3...1, 7) \cdot 10^{-15} \cdot A^{\frac{1}{3}}i, \end{aligned}$$

$$2\pi r = n\lambda = n\frac{h}{m_e v},\qquad(1.7)$$

$$\delta = \frac{m_{\beta}}{V} \approx 10^{14} \, \frac{m}{2} \, 3,$$

$m_e v^2$	$- e^2$	(1.8)
r -	$-\frac{1}{4\pi \varepsilon_0 r^2}$	(1.0)

$$r_e = \frac{\mu_0 e^2}{4\pi \cdot m_e} \approx 2,817 \cdot 10^{-15} i$$
.

$$r_n = \frac{n^2 h^2 \varepsilon_0}{\pi \, e^2 m_e};$$

$$r_1 = \frac{h^2 \varepsilon_0}{\pi e^2 m_e} \approx 0,529 \cdot 10^{-10} i$$
,

$$W_n = -\frac{m_e e^4}{8n^2 h^2 \varepsilon_0^2}.$$

(1.10)

(1.9)

$$W_1 = \frac{m_e e^4}{h^2 \varepsilon_0^2} \approx 13,53 \acute{y} \hat{A}.$$

РЕШЕНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ВОДОРОДОПОДОБНЫХ АТОМНЫХ СИСТЕМ

$$W_{n} = -\frac{m_{0e}e^{4}}{2\mathbb{Q}^{2}} \cdot \frac{Z^{2}}{n^{2}}, \qquad (1.11.a)$$

$$n = 1, 2, \dots, \infty.$$
 (1.11.6)

$$\Psi = \Psi_{n,l,m}(r;\theta,\varphi), \qquad (1.12.a)$$

 $l = 0, 1, 2, ..., n-1, \quad m = 0, \pm 1, \pm 2, ... \pm l.$ (1.12.6)

КВАНТОВЫЕ ЧИСЛА

Главное квантовое число *n* = 1, 2,...,
 ∞.

2. Побочное (орбитальное или азимутальное) квантовое число / = 0, 1, 2,..., n – 1.

3. Магнитное квантовое число *m* = 0, ± 1, ±2,..., ± *I*.

4. Спиновое квантовое число $s = \pm \frac{1}{2}$.

Рис.1.2. Спектры энергий и частот водородоподобного атома

Таблица 1.2. Основные сведения об оболочках

Квантовое число <i>п</i>	1	2	3	4	5	6	7
Обозначение оболочки	K	L	Μ	Ν	0	Ρ	Q
Число подоболочек (<i>n</i>)	1	2	3	4	5	6	7
Число орбиталей (<i>n</i> ²)	1	4	9	16	25	36	49
Число эл. состояний (2 <i>n</i> ²)	2	8	18	32	50	72	98

Таблица 1.3. Основные сведения о подоболочках

Квантовое число /		0	1	2	3	4	5	
Обозначение			S	р	d	f	g	h
подоболочки								
Число (2/+1)		орбиталей	1	3	5	7	9	11
Число 2(2/+1)	эл.	состояний	2	6	10	14	18	22
			13					

Рис. 1.3. ПОДОБОЛОЧКИ И ОРБИТАЛИ ОБОЛОЧКИ n=2

1.2. Понятие об энергетических уровнях и зонах

Рис.1.4. Энергетическая диаграмма уединённого атома

Рис.1.5. Энергетическая диаграмма кристалла

Рис.1.6. Схема расщепления энергетических уровней

Пояснение процесса образования энергетических зон в кристалле

Энергетические диаграммы материалов электроники

Рис.1.8. Энергетическая диаграмма полупроводника типа *i*

Классификация полупроводниковых материалов по составу и свойствам

По составу:

- ▶ простые (элементарные) *Ge, Si, Se,*...;
- на основе бинарных соединений A^mBⁿ;
- трёхкомпонентные твёрдые растворы $A_x B_{1-x} C_r$ $AC_y D_{1-y}$;

четырё́хкомпонентные твёрдые растворы
А_xB_{1-x}C_yD_{1-y}.

По свойствам:

- собственные полупроводники (*i*—типа),
 электронные полупроводники (*n*—типа),
- дырочные полупроводники (*p*-типа).

Продолжение

1.3. Кристаллическая решётка

Рис. 1.9.

Рис. 1.10. Типы элементарных ячеек

Триклинная $\alpha \neq b \neq c$, $\alpha \neq \beta \neq \gamma = 90^\circ$.Моноклинная $\alpha \neq b \neq c$, $\alpha = \gamma = 90^\circ$, $\beta \neq 90^\circ$.Ромбическая $\alpha \neq b \neq c$, $\alpha = \beta = \gamma = 90^\circ$.Тетрагональная $\alpha = b \neq c$, $\alpha = \beta = \gamma = 90^\circ$.Гексагональная $\alpha = b \neq c$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$.Кубическая $\alpha = b = c$, $\alpha = \beta = \gamma = 90^\circ$.

Рис. 1.11. Примеры ячеек кристаллических решёток

Рис. 1.12. Индексы Миллера

Рис.1.13. Кристаллические решётки полупроводников

Рис.1.14. Типы химических связей в кристаллах

Металлическая - в узлах (+) ионы, окружённые коллективизированными свободными электронами. Молекулярная - молекулы образуют диполи, полюсы и заряд которых меняются во времени.

Рис.1.15. Дефекты кристаллической решётки

Механические

Винтовая дислокация

Рис.1.16. Дефекты кристаллической решётки

1.4. Основные выводы по разделу 1.

- Основные полупроводниковые материалы, используемые в электронике, кремний, германий и арсенид галлия, – имеют кристаллическую решётку типа алмаза. Для неё характерна ковалентная химическая связь.
- В полупроводнике присутствуют свободные носители заряда двух типов, электроны проводимости и дырки.

2. Свойства полупроводников 2.1. Собственный полупроводник

Рис.2.1

2.2. Определение равновесной концентрации зарядов в собственном полупроводнике

$$\begin{split} n_i &= p_i \quad ;\\ \rho_n(W) &= \frac{4\pi (2m_n)^{\frac{3}{2}}}{h^3} \sqrt{W - W_c};\\ f_n(W) &= \frac{1}{1 + \exp\left(\frac{W - W_F}{kT}\right)} \\ n &= \int_{W_c}^{\infty} \rho_n(W) f_n(W) dW,\\ p &= \int_{W_c}^{W_V} \rho_p(W) f_p(W) dW. \end{split}$$

(2.1)
(2.2)
(2.3)
(2.4)

2.2. Продолжение

$$n_{i} = p_{i} = N \exp\left(-\frac{\Delta W}{2kT}\right), \quad (2.6)$$

$$N = \frac{2}{h^{3}} (2\pi kT)^{3/2} (m_{n}m_{p})^{3/4}, \quad (2.7)$$

$$n \cdot p = n_{i}^{2}. \quad (2.8)$$

2.3. Функция распределения Ферми-Дирака

Рис.2.2

2.4. Вероятность распределения электронов по энергетическим уровням в полупроводнике

2.5.Уровень Ферми в собственном полупроводнике

(2.9)

(2.10)

$$\begin{split} W_{Fi} &= W_E + \frac{3kT}{4} \ln \frac{m_p}{m_n} \ , \\ W_E &= \frac{W_v + W_c}{2} = W_v + \frac{\Delta W}{2} = W_c - \frac{\Delta W}{2} \ . \end{split}$$

2.6. Эффективные массы электрона и

- В вакууме свободный электрон движется с ускорением а = E/m_{oe} в поле E.
- Электрон в кристалле движется с ускорением а = *Е/m_n*, где m_n – эффективная масса электрона, учитывающая взаимодействие электрона с полем кристаллической решётки.
- Величина m_n зависит от направления движения электрона, так как электрон движется в разных направлениях в переменных полях с различными периодами, образуемых узлами кристаллической решётки, (см. рис.). Учитывая все возможные направления движения электрона и усредняя ускорение, приходим к понятию эффективной массы m_n.
- Аналогичные рассуждения можно провести по отношению к дырке и врийти к понятию эффективной массы дырки m_p. Очевидно, m_p ≠ m_p.

• Определение понятия примесного полупроводника. • Примеси в простых полупроводниках. • Примеси в сложных полупроводниках. Электронные (типа n) и дырочные (типа *p*) полупроводники.

40

2.7. Примесные полупроводники

2.8. Полупроводник типа п

Рис.2.4

2.9. Полупроводник типа р

Рис.2.5

2.10. Соотношения между концентрациями подвижных зарядов в примесных полупроводниках

$$n = \frac{1}{2} \left(N_d - N_a + \sqrt{(N_d - N_a)^2 + 4n_i^2} \right);$$

$$p = \frac{1}{2} \left(N_a - N_d + \sqrt{(N_a - N_d)^2 + 4n_i^2} \right);$$

$$p \cdot n = n_i^2 = p_i^2;$$

$$N_a = N_d, \quad p = n = n_i = p_i.$$
2.14

2.10. Продолжение

$$n_{n} = \frac{1}{2} \left(N_{d} + \sqrt{N_{d}^{2} + 4n_{i}^{2}} \right),$$

$$p_{n} = \frac{n_{i}^{2}}{n_{n}}.$$

$$p_{p} = \frac{1}{2} \left(N_{a} + \sqrt{N_{a}^{2} + 4n_{i}^{2}} \right),$$

$$n_{p} = \frac{n_{i}^{2}}{p_{p}}.$$

$$N_{d} \gg n_{i}, \quad n_{n} \approx N_{d}.$$

$$N_{a} \gg n_{i}, \quad p_{p} \approx N_{a}.$$

$$(2.15)$$

 (2.16)
 (2.17)
 (2.18)
 (2.19)
 (2.20)

2.11. Зависимости равновесных концентраций подвижных зарядов от степени легирования полупроводников примесями

2.12. Уровни Ферми в примесных полупроводниках

Рис.2.7. Полупроводник *п*-типа

 $W_{Fn} = W_E + kT \ln \frac{n_n}{n_i},$

(2.21)

2.12. Продолжение

Рис.2.8. Полупроводник р-типа

(2.22)

$$W_{Fp} = W_E - kT \ln \frac{p_p}{n_i}$$

2.13. Зависимость уровней Ферми от концентраций примесей

2.14. Механизмы образования подвижных зарядов

2.15. Основные и неосновные носители зарядов

2.16. Токи в полупроводнике. 2.16.1. Ток дрейфа.

$$\begin{aligned} v_{n,\text{pp}} &= -\mu_{n}E, & v_{p,\text{pp}} &= \mu_{p}E; \end{aligned} (2.23) \\ j_{n,\text{pp}} &= en\mu_{n}E, & j_{p,\text{pp}} &= ep\mu_{p}E; \end{aligned} (2.24) \\ j_{\text{pp}} &= j_{n,\text{pp}} + j_{p,\text{pp}} &= e(n\mu_{n} + p\mu_{p})E = \sigma E; \end{aligned} (2.25) \\ \sigma &= e(n\mu_{n} + p\mu_{p}) = \sigma_{n} + \sigma_{p}; \end{aligned} (2.26) \\ \vec{j}_{\text{pp}} &= \vec{j}_{n,\text{pp}} + \vec{j}_{n,\text{pp}}. \end{aligned}$$

2.16.2. Электропроводность полупроводников в электрическом поле

2.16.3. Ток диффузии. Полный ток.

2.17. Время жизни неравновесных зарядов

2.18. Диффузионная длина неравновесных зарядов

2.4. Влияние поверхностных состояний

Рис.2.13

2.5. Эффект внешнего поля

Рис.2.15. Термическая ионизация (эффект Френкеля)

Рис.2.16. Эффект Зинера (туннельный эффект)

2.6. Основные выводы по разделу 2

- В полупроводнике, находящемся в состоянии равновесия, распределение электронов по энергетическим уровням соответствует распределению Ферми-Дирака.
- По типу электропроводности полупроводники разделяются на собственные (полупроводники *i*-типа), электронные (полупроводники *n*-типа) и дырочные (полупроводники *p*-типа).
- Существует два вида направленного движения свободных носителей заряда в полупроводнике, дрейф и диффузия.
- Под действием внешнего электрического поля могут изменяться концентрации свободных носителей заряда в приповерхностном слое полупроводникового кристалла.

Контактные явления. Контакты металл–полупроводник. 3.1.1. Работа выхода.

Контактные явления. Работа выхода и контактная разность потенциалов

Металл Полупроводник Полупроводник п – типа р – типа

Электроны переходят из материала с меньшей работой выхода в материал с большей работой выхода, пока возникшее скопление зарядов не создаст поле, препятствующее переходу электронов. Контактная разность потенциалов

 $U_{\rm K}=\varphi_2-\varphi_1\,.$

Работа выхода Ч равна энергии, необходимой для удаления электрона с уровня Ферми в бесконечность.

Контакт металла с полупроводниками *п*-типа

Запорный слой

Электроны переходят из полупроводника n – типа в металл, оставляя положительные ионы доноров.

В месте контакта – обедненный свободными электронами слой толщиной *L* и барьер высотой U_к. Слой повышенной проводимости

Электроны переходят из металла в полупроводник, образуя слой повышенной проводимости толщиной *L*.

3.1.2. Потенциальные барьеры на границе токопроводящих материалов и вакуума

$$\varphi_m = \frac{W_m}{e} = \frac{W_{F_m}}{e}; \qquad (3.7)$$

$$\varphi_i = \frac{W_i}{e} = \frac{W_F_i}{e} = \frac{W_E}{e} + \frac{3kT}{4e} \ln \frac{m_p}{m_n}$$
, (3.8)

$$\varphi_n = \frac{W_n}{e} = \frac{W_{F_n}}{e} = \frac{W_E}{e} + \frac{kT}{e} \ln \frac{n_n}{n_i}; \qquad (3.9)$$

$$\varphi_p = \frac{W_p}{e} = \frac{W_{F_p}}{e} = \frac{W_E}{e} - \frac{kT}{e} \ln \frac{p_p}{n_i}$$
; (3.10)

$$\varphi_E = \frac{W_E}{e} = \frac{W_v + W_c}{2e} \,. \tag{3.11}$$

3.2.1. Виды контактов металл–полупроводник. Условия реализации

Таблица 3.1

	12	
Контакт	Тип контакта	Условия реализации
<i>m</i> – <i>n</i>	омический	$W_m < W_n$
		$\varphi_m < \varphi_n$
	выпрямляющий	$W_m > W_n$
		$\varphi_m > \varphi_n$
<i>m</i> – <i>p</i>	омический	$W_m > W_p$
		$\varphi_m > \varphi_p$
	выпрямляющий	$W_m < W_p$
		$\varphi_m < \varphi_p$

3.2.2. Виды контактов металл–полупроводник. Выпрямляющие контакты

3.2.3. Виды контактов металл-полупроводник. Омические контакты.

Рис.3.6. Выпрямляющий контакт

Рис.3.7. Омический контакт

Рис.3.8. Выпрямление на контакте металла с полупроводником *n*-типа

Формулы для контактов металл-полупроводник

$$I = I_0 \left[\exp\left(\frac{eU}{kT}\right) - 1 \right]; \qquad (3.12)$$

$$\delta = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon \cdot (\varphi_k - U)}{e \cdot N_d}}, \quad (3.13) \quad C = \frac{\varepsilon_0 \cdot \varepsilon \cdot S}{\delta} = S \sqrt{\frac{e \cdot \varepsilon_0 \cdot \varepsilon \cdot N_d}{2 \cdot (\varphi_k - U)}}; \quad (3.14)$$

$$\delta = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon \cdot (\varphi_k - U)}{e \cdot N_a}}, \quad (3.15) \quad C = \frac{\varepsilon_0 \cdot \varepsilon \cdot S}{\delta} = S \sqrt{\frac{e \cdot \varepsilon_0 \cdot \varepsilon \cdot N_a}{2 \cdot (\varphi_k - U)}}. \quad (3.16)$$

Преобразование выражений (3.13...3.16)

$$\Delta \varphi (U) = \varphi_{\kappa} - U = \varphi_{\kappa} \left[1 - \frac{U}{\varphi_{\kappa}} \right], \quad (3.17)$$
$$\delta = \delta \left[\Delta \varphi (U) \right] = \delta_0 \left(1 - \frac{U}{\varphi_{\kappa}} \right)^{\frac{1}{2}}, \quad (3.18)$$

$$C = C \Big[\Delta \varphi(U) \Big] = C_0 \Big[1 - \frac{U}{\varphi_k} \Big]^{-\frac{1}{2}} . \quad (3.19)$$

Выражения для $\boldsymbol{\delta}_{0}$ и \boldsymbol{C}_{0}

$$\delta_{0} = \left(\frac{2 \cdot \varepsilon_{0} \cdot \varepsilon \cdot \varphi_{k}}{e N_{d}}\right)^{\frac{1}{2}}, \quad (3.20) \qquad \delta_{0} = \left(\frac{2 \cdot \varepsilon_{0} \cdot \varepsilon \cdot \varphi_{k}}{e N_{a}}\right)^{\frac{1}{2}}; \quad (3.21)$$
$$C_{0} = S \left(\frac{2 \cdot \varepsilon_{0} \cdot \varepsilon \cdot N_{d}}{e \varphi_{k}}\right)^{\frac{1}{2}}, \quad (3.22) \qquad C_{0} = S \left(\frac{2 \cdot \varepsilon_{0} \cdot \varepsilon \cdot N_{a}}{e \varphi_{k}}\right)^{\frac{1}{2}}. \quad (3.23)$$
Рис.3.9. Графики $\varDelta \varphi(U)$, I(U), $\delta(U)$ и C(U)

Нормирование функций $\delta(U)$, $\Delta \varphi(U)$ и C(U)

$$\frac{\delta}{\delta_0} = \left(1 - \frac{U}{\varphi_k}\right)^{\frac{1}{2}}, \quad (3.24) \qquad \frac{\Delta \varphi(U)}{\varphi_k} = 1 - \frac{U}{\varphi_k}, \quad (3.25)$$
$$\frac{C}{C_0} = \left(1 - \frac{U}{\varphi_k}\right)^{-\frac{1}{2}}. \quad (3.26)$$

Рис.3.10. Графики нормированных функций $\delta(U), \Delta \varphi(U)$ и C(U)

3.3. Основной вывод по разделу 3

• Существует два вида переходов металл-полупроводник, – выпрямляющие переходы и омические контакты. Выпрямляющие переходы обладают свойством односторонней проводимости. Омические контакты не обладают таким свойством.

4. Электронно-дырочный переход 4.1. Структура электронно-дырочного перехода

Рис. 4.1.

4.2. Электронно–дырочный переход в состоянии равновесия 4.2.1. Контакт двух полупроводников. Рис.4.2. Образование *p*–*n*–перехода

4.2.2. Факторы динамического равновесия

$$E = -grad \varphi = \left(-\frac{\varphi_k}{\delta}\right) < 0$$

$$-\frac{\varphi_k}{4} + \frac{p}{2}$$

$$p + \frac{\varphi_k}{4} + \frac{p}{2}$$

$$grad p = \frac{dp}{dx} = \left(\frac{p_n - p_p}{\delta}\right) < 0$$

$$grad n = \frac{dn}{dx} = \left(\frac{n_n - n_p}{\delta}\right) > 0$$

Рис.4.3

4.2.3. Равновесное состояние перехода

Рис. 4.4

4.2.4. Распределение зарядов в *р*-*n*-переходе

Формулы к рис.4.5

$$p(x) = \begin{cases} p_p \exp\left[\frac{\varphi_p(-\delta_p) - \varphi_p(x)}{\varphi_T}\right] & \text{ide} & -\delta_p \le x \le 0, \\ p_p & \text{ide} & x \le -\delta_p, \\ p_p \exp\left[\frac{\varphi_p(-\delta_p) - \varphi_n(x)}{\varphi_T}\right] & \text{ide} & 0 \le x \le \delta_n, \\ p_n & \text{ide} & x \ge \delta_n. \end{cases}$$
(4.2)

$$n(x) = \begin{cases} n_n \exp\left[\frac{\varphi_n(x) - \varphi_n(\delta_n)}{\varphi_T}\right] & \text{i}\check{\partial}\check{e} & 0 \le x \le \delta_n, \\ n_n & \text{i}\check{\partial}\check{e} & x \ge \delta_n, \\ n_n \exp\left[\frac{\varphi_p(x) - \varphi_n(\delta_n)}{\varphi_T}\right] & \text{i}\check{\partial}\check{e} & -\delta_p \le x \le 0, \\ n_p & \text{i}\check{\partial}\check{e} & x \le -\delta_p. \end{cases}$$
(4.3)

4.2.5. Распределение поля и потенциала в *p*-*n*-переходе

a

б

Β

83

Формулы к рис.4.6

$$E(x) = \begin{cases} E_n(x) = \frac{eN_d}{\varepsilon_0 \varepsilon} (\mathcal{S}_n - x) & \mathbf{при} \quad 0 \le \mathcal{S}_n, \\ 0 & \mathbf{прu} \quad x \ge \mathcal{S}_n, \\ E_p(x) = \frac{eN_a}{\varepsilon_0 \varepsilon} (\mathcal{S}_p + x) & \mathbf{прu} - \mathcal{S}_p \le x \le 0, \\ 0 & \mathbf{прu} \quad x \le -\mathcal{S}_p. \end{cases}$$
(4.4)

$$\varphi(x) = \begin{cases} \varphi_n(x) = \frac{eN_d}{\varepsilon_0 \varepsilon} \left(\mathcal{S}_n - \frac{x}{2} \right) x \quad \mathbf{при} \quad 0 \le x \le \mathcal{S}_n, \\ \varphi_n(\mathcal{S}_n) & \mathbf{при} \quad x \ge \mathcal{S}_n, \\ \varphi_p(x) = \frac{eN_d}{\varepsilon_0 \varepsilon} \left(\mathcal{S}_p + \frac{x}{2} \right) x \quad \mathbf{прu} - \mathcal{S}_p \le x \le 0, \\ \varphi_p(-\mathcal{S}_p) & \mathbf{прu} \quad x \le -\mathcal{S}_p. \end{cases}$$
(4.5)

4.2.6. Энергетическая диаграмма *p*-*n*-перехода в равновесном состоянии

Рис.4.7

Формулы для равновесного *р*-*n*-перехода

$$\delta = \delta_p + \delta_n = \sqrt{\frac{2\varepsilon_0\varepsilon}{e} \frac{N_a + N_d}{N_a N_d}} \phi_{\kappa}, \quad (4.2)$$
$$N_a \delta_p = N_d \delta_n, \quad (4.3)$$

$$\delta_p = \frac{N_d}{N_a + N_d} \delta, \quad \delta_n = \frac{N_a}{N_a + N_d} \delta. \quad (4.4)$$

$$\varphi_{\kappa} = \frac{e}{2\varepsilon_{0}\varepsilon} \left(N_{a}\delta_{p}^{2} + N_{d}\delta_{n}^{2} \right), \quad (4.5)$$

$$\varphi_{\kappa} = \frac{kT}{2\varepsilon_{0}\varepsilon} \ln \frac{n_{n}}{m} = \frac{kT}{2\varepsilon_{0}\varepsilon} \ln \frac{p_{p}}{m}, \quad (4.6)$$

$$\varphi_{\kappa} = \frac{\kappa T}{e} \ln \frac{n_n}{n_p} = \frac{\kappa T}{e} \ln \frac{P_p}{p_n}.$$
 (4.6)

$$\Delta W_{Fp} = W_{Ep} - W_{Fp} = kT \ln \frac{p_p}{n_i}, \quad (4.7)$$

$$\Delta W_{Fn} = W_{Fn} - W_{En} = kT \ln \frac{n_n}{n_i}, \quad (4.8) \qquad E_{max} = \frac{e}{\varepsilon_0 \varepsilon} N_a \delta_p = \frac{e}{\varepsilon_0 \varepsilon} N_d \delta_n. \quad (4.10)$$

$$W_{\nu p} - W_{\nu n} = W_{cp} - W_{cn} = e \phi_{\kappa}. \quad (4.9)$$

4.2.7. Энергетическая диаграмма *p*-*n*-перехода при *U* > 0

Рис.4.8

4.2.8. Энергетическая диаграмма *p*-*n*-перехода при *U* < 0

$$\begin{split} \delta(U) &= \sqrt{\frac{2\varepsilon_0 \varepsilon}{e}} \frac{N_a + N_d}{N_a N_d} \Delta \varphi(U); \quad (4.11) \\ E(U) &= \sqrt{\frac{2e}{\varepsilon_0 \varepsilon}} \frac{N_a N_d}{N_a + N_d} \Delta \varphi(U) , \quad (4.12) \\ \Delta \varphi(U) &= \varphi_k - U, \quad (4.13) \\ E(0) &= E_0 = \sqrt{\frac{2e}{\varepsilon_0 \varepsilon}} \frac{N_a N_d}{N_a + N_d} \varphi_k . \quad (4.14) \end{split}$$

4.3. Прямое и обратное включение *р*-*n*-перехода

90

4.4. Инжекция и экстракция. Вольт-амперная характеристика *р*-*n*-перехода

Рис. 4.11.

$$\Delta p_n = p_n - p_{n0}, \qquad \Delta n_p = n_p - n_{p0} \qquad (4.15)$$
91

Аналитическое представление ВАХ

$$I = I_0 \left[\exp\left(\frac{eU}{kT}\right) - 1 \right]. \tag{4.16}$$

$$I_{0} = eS\left(\frac{D_{p}}{L_{p}}p_{n0} + \frac{D_{n}}{L_{n}}n_{p0}\right),$$
(4.17)

$$I_{0} = eS\left(\frac{D_{p}}{w_{p}}p_{n0} + \frac{D_{n}}{w_{n}}n_{p0}\right).$$
 (4.18)

92

Вольтамперная характеристика *р*-*n*-перехода

Рис.4.12

4.5. Барьерная и диффузионная ёмкости *р-п*-перехода

$$C = C_{6} + C_{\pi}.$$
 (4.19)
$$C_{6} = S \sqrt{\frac{\varepsilon_{0} \varepsilon_{\ell}}{2} \frac{N_{a} N_{d}}{N_{a} + N_{d}} \frac{1}{\varphi_{\kappa} - U}}.$$
 (4.20)

$$C_{\pi} = \frac{e^2 S}{kT} \left(L_p p_n + L_n n_p \right) \exp\left(\frac{eU}{kT}\right)$$
(4.21)

Нормированные функции $\delta, \varDelta \varphi, C$ и E

$$\frac{\delta}{\delta_0} = \left(1 - \frac{U}{\varphi_k}\right)^{\frac{1}{2}}, \quad (4.22) \qquad \frac{\Delta \varphi(U)}{\varphi_k} = 1 - \frac{U}{\varphi_k}, \quad (4.23)$$
$$\frac{C}{C_0} = \left(1 - \frac{U}{\varphi_k}\right)^{-\frac{1}{2}}, \quad (4.24) \qquad \frac{E}{E_0} = \left(1 - \frac{U}{\varphi_k}\right)^{\frac{1}{2}}. \quad (4.25)$$

Графики нормированных функций

4.5. Барьерная и диффузионная ёмкости *р–п*–перехода

$$C_{\partial} = \frac{dQ}{dU} \qquad (4.19) \qquad \qquad \frac{dQ}{dI} = \tau \qquad (4.23)$$

$$C_{\partial} = \frac{dQ}{dI} \frac{dI}{dU} \qquad (4.20) \qquad \qquad C_{\partial} = \frac{eI_{0}\tau}{kT} \exp\left(\frac{eU}{kT}\right) \qquad (4.24)$$

$$\frac{dI}{dU} = \frac{eI_{0}}{kT} \exp\left(\frac{eU}{kT}\right) \qquad (4.22) \qquad C_{\bar{o}} = S\sqrt{\frac{\varepsilon_{0}\varepsilon_{e}}{2} \frac{N_{a}N_{o}}{N_{a} + N_{o}} \frac{1}{\varphi_{\kappa} - U}} \qquad (4.25)$$

$$r_{\partial} = \frac{dU}{dI} = \frac{kT}{eI_0} \exp\left(-\frac{eU}{kT}\right)$$
(4.26)
97

Рис. 4.6.

4.6. Инерционные свойства *р-п*-перехода

4.6. Основные выводы по разделу 4

- В *p*-*n*-переходе образуются обеднённый слой, внутреннее электрическое поле и потенциальный барьер.
- При прямом включении *p*-*n*-переход обладает малым сопротивлением, а при обратном включении большим сопротивлением.
- Вольт–амперная характеристика *p*–*n*–перехода нелинейна.
- Электронно–дырочный переход обладает барьерной и диффузионной ёмкостями.
 Барьерная ёмкость обусловлена зарядами примесных ионов, сосредоточенными в обеднённом слое. Диффузионная ёмкость обусловлена неравновесными свободными носителями заряда, сконцентрированными вне обеднённого слоя.

5. Физические явления, вызывающие отклонения от идеализированной модели *р–п–*перехода 5.1. Тепловой пробой

$$P_{\text{под}} = U_{\text{обр}} I_{\text{обр}} \exp\left(\frac{\Delta W(T_{\text{п}} - T_{\text{o}})}{kT_{\text{n}}T_{\text{o}}}\right)$$
(5.1)

$$P_{\rm otb} = \frac{\left(T_{\rm m} - T_{\rm o}\right)}{R_T} \tag{5.2}$$

$$R_T = \frac{d}{\lambda S} \tag{5.3}$$

$$U_{\text{ofp,max}} = \frac{\left(T_{\pi,\text{max}} - T_{\text{o}}\right)}{R_T I_{\text{ofp}}}$$

(5.4)

5.2. Электрический (лавинный) пробой

5.3. Туннельный эффект

Рис. 5.5.

5.4. Основные выводы по разделу 5

- Тепловой пробой *p*–*n*–перехода обусловлен увеличением концентраций свободных носителей заряда, сопровождающимся увеличением температуры полупроводника.
- Лавинный пробой *p*–*n*–перехода обусловлен увеличением концентраций свободных носителей заряда, происходящим в результате ударной ионизации атомов полупроводника.
- Туннельный пробой *p*–*n*–перехода обусловлен проникновением электронов сквозь потенциальный барьер, что возможно при больших значениях концентраций примесей в *p* и *n*–области, а также при большом по модулю обратном напряжении, приложенном к переходу.

6. Гетеропереходы

$$\Delta W_{\rm m} + \Delta W_{\rm B} = \Delta W_1 - \Delta W_2 \tag{6.1}$$

$$\delta = \sqrt{\frac{2\varepsilon_0 \varepsilon_n \varepsilon_p (N_a + N_d)^2 \varphi_0}{q N_a N_d (\varepsilon_n N_d + \varepsilon_p N_a)}}$$
(6.2)

$$\varphi_0 = \frac{W_{\Phi 1} - W_{\Phi 2}}{q} \tag{6.3}$$
Основной вывод по разделу 6

• Переходы между полупроводниками с различной шириной запрещённой зоны обладают свойством односторонней проводимости.

7. Фотоэлектрические явления 7.1. Воздействие оптического излучения на полупроводник

$$E_{\phi} = h\nu = \frac{ch}{\lambda} \tag{7.1}$$

7.2. Фотопроводимость

$$\Phi(x) = \Phi(0) \exp(-\alpha_{\phi} x) \tag{7.2}$$

$$\frac{dN}{dx} = -(1 - R_{\phi})N_0 \exp(-\alpha_{\phi}x)$$
(7.3)

$$\sigma_{\phi} = q \big(\mu_n \Delta n + \mu_p \Delta p \big) \tag{7.4}$$

$$K_{\Sigma} = \frac{I_{\phi}}{\Phi} \tag{7.5}$$

$$K_{\Sigma,\mathrm{yg}} = \frac{K_{\Sigma}}{U} \tag{7.6}$$

7.3. Фотогальванический эффект

7.4. Основные выводы по разделу 7

- Под действием светового облучения может происходить увеличение проводимости полупроводника.
- При световом облучении р-п-перехода в нём возникает фото-ЭДС.

8. Термоэлектрические явления в полупроводниках 8.1. Эффект Зеебека

$$E = \alpha_T \Delta T \tag{8.1}$$

гор хол Рис. 8.2.

$$I = \frac{U}{R + R_{\rm H}} = \frac{\alpha_T \Delta T}{R + R_{\rm H}}$$
(8.2)

$$P = I^{2} R_{\rm H} = \frac{\alpha_{T}^{2} \Delta T^{2}}{(R + R_{\rm H})^{2}} R_{\rm H}$$
(8.3)

8.2. Эффект Зеебека

$$Q_{\Pi} = \Pi It \tag{8.4}$$

$$\Pi = \alpha_T T \tag{8.5}$$

Рис. 8.3.

8.3. Основные выводы по разделу 8

- При различной температуре контактов в цепи с термоэлементом появляется ЭДС.
- При пропускании постоянного тока в спаях термоэлемента происходит поглощение и выделение тепла.

9. Гальваномагнитный эффект Холла

-qE = qVB (9.1) I = jS = jbd (9.3) E = -VB (9.2) $j = qnV = qn\mu E_0$ (9.4)

$$R = \frac{A(\mu_p - \mu_n)}{qn(\mu_p + \mu_n)} \tag{9.9}$$

Основной вывод по разделу 9

• Под действием постоянного магнитного поля в полупроводнике возникает ЭДС.

10. Электронная эмиссия 10.1. Термоэлектронная эмиссия

$$W_{\rm Bbix} = W_0 - W_{\Phi} \tag{10.1}$$

$$j_{\mathfrak{H}} = AT^2 \exp\left(-\frac{W_{\text{вых}}}{kT}\right) \tag{10.2}$$

$$H = \frac{I_{3}}{P_{\rm H}}$$
(10.3)

Таблица10.1

Тип катода	₩₀, эВ	<u></u> <u>J</u> ₂ , А/ см ²	T ^o C	Н, мА/Вт
однородный металлический	2÷5	<1	>2000	<15
активированный	<2	≤10	≈1600	20÷70
полупроводниковый	<2	<15	<1000	80÷200

10.2. Вторичная эмиссия

10.3. Автоэлектронная эмиссия

10.4. Фотоэлектронная эмиссия

$$I_{\phi} = s\Phi \tag{10.5}$$

1 1 0

$$\frac{mV^2}{2} = hv - W_{\rm BMX}$$
(10.6)

10.5. Основные выводы по разделу 10

В электровакуумных приборах используются 4 вида электронной эмиссии:
 1) термоэлектронная эмиссия, – эмиссия электронов из катода под действием тепловой энергии;

2) вторичная электронная эмиссия, – эмиссия электронов, происходящая при бомбардировке поверхности катода потоками электронов или ионов;

3) автоэлектронная эмиссия, – эмиссия электронов из катода под действием электрического поля;

4) фотоэлектронная эмиссия, – эмиссия электронов из катода под действием светового облучения.

11. Электрический разряд в газе 11.1. Взаимодействие частиц в газовой среде

Рис. 11.2

Рис. 11.3.

Таблица 11.1

катод	газ	<i>U</i> з _{тіп} , В	$Pd_{min}, \Pi a \cdot M$
Fe	He	150	0,33
Fe	Ne	244	0,40
Fe	Ne+0,01%Ar	183	6,65
Ni	He	211	0,53

11.2. Виды электрических разрядов

Рис. 11.6.

11.3. Основной вывод по разделу 11

• Различают 4 вида электрических разрядов в газе: тихий разряд, тлеющий разряд, дуговой разряд и коронный разряд.

ЛИТЕРАТУРА

1. Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы. - СПб.: Издательство «Лань», 2003. 2. Петров К. С. Радиоматериалы, радиокомпоненты и электроника. – СПб.: Питер, 2003. <u>З. Степаненко И. П. Основы микроэлектроники. –</u> М.: Лаборатория Базовых Знаний, 2000. 4. Электронные приборы/ *В. Н. Дулин, Н. А. Аваев, В. П. Дёмин* и др.; Под ред. *Г. Г. Шишкина.* – М.: Энергоатомиздат, 1989. 5. *Фридрихов С. А., Мовнин С. М.* Физические основы электронной техники. – М.: Высшая школа, 1982. 6. *Батушев В. А.* Электронные приборы. – М.: Высшая школа, 1980. 7. Арефьев А.С., Рудь В.В. Физические основы электроники. – Самара: ООО «САМБР», 2006. –

52 c.