Geology of Petroleum Systems

Petroleum Geology

Objectives are to be able to:

- Discuss basic elements of Petroleum Systems
- Describe plate tectonics and sedimentary basins
- Recognize names of major sedimentary rock types
- Describe importance of sedimentary environments to petroleum industry
- Describe the origin of petroleum
- Identify hydrocarbon trap types
- Define and describe the important geologic controls on reservoir properties, porosity and permeability

Outline

- Petroleum Systems approach
- Geologic Principles and geologic time
- Rock and minerals, rock cycle, reservoir properties
- Hydrocarbon origin, migration and accumulation
- Sedimentary environments and facies; stratigraphic traps
- Plate tectonics, basin development, structural geology

Petroleum System - A Definition

- •A Petroleum System is a dynamic hydrocarbon system that functions in a restricted geologic space and time scale.
- •A Petroleum System requires timely convergence of geologic events essential to the formation of petroleum deposits.

These Include:

- Mature source rock
- Hydrocarbon expulsion
- Hydrocarbon migration
- Hydrocarbon accumulation
- Hydrocarbon retention

(modified from Demaison and Huizinga,

1994)

(modified from Magoon a 1994)

Basic Geologic Principles

- Uniformitarianism
- Original Horizontality
- Superposition
- Cross-Cutting Relationships

Cross-Cutting Relationships

Types of Unconformities

Disconformity

 An unconformity in which the beds above and below are parallel

Angular Unconformity

 An unconformity in which the older bed intersect the younger beds at an angle

Nonconformity

 An unconformity in which younger sedimentary rocks overlie older metamorphic or intrusive igneous rocks

Correlation

- Establishes the age equivalence of rock layers in different areas
- Methods:
 - Similar lithology
 - Similar stratigraphic section
 - Index fossils
 - Fossil assemblages
 - Radioactive age dating

Geologic Time Chart

Rocks

Classification of Rocks

Sedimentary Rock Types

Relative abundance

Sandstone and conglomerate ~11%

> Limestone and dolomite ~13%

Siltstone, mud and shale ~75%

Minerals - Definition

Quartz Crystals Naturally Occurring Solid

Generally Formed byorganic Processes

Ordered Avteangement of Atoms (Crystal Structure)

Chemical Composition and Physical **Pixperties** ary Within A Definite Range

Average Detrital Mineral Composition of Shale and Sandstone

Mineral Composition	Shale (%)	Sandstone (%)
Clay Minerals	60	5
Quartz	30	65
Feldspar	4	10-15
Rock Fragments	<5	15
Carbonate	3	<1
Organic Matter, Hematite, and Other Minerals	<3	<1 (modified from Blatt,
the second se		1982)

The Physical and Chemical Characteristics of Minerals Strongly Influence the Composition of Sedimentary Rocks

Quartz

- Mechanically and Chemically Stable
 Can Survive Transport and Burial
- Feldspar Nearly as Hard as Quartz, but Cleavage Lessens Mechanical Stability
 - May be Chemically Unstable in Some Climates and During Burial

Calcite

 Mechanically Unstable During Transport
 Chemically Unstable in Humid Climates Because of Low Hardness, Cleavage, and Reactivity With Weak Acid

Some Common Minerals

Oxides	Sulfides	Carbonates	Sulfates	Halides	
<i>Hematite Magnetite</i>	Pyrite Galena Sphalerit e	Aragonit Salcite Dolomite Fe-Dolomite Ankerit	Anhydrit Gypsum	Halite Sylvit e	
e Silicates					
Non-Ferro (Common in Sec Quartz Muscovite Feldspars Potassiu Orthoo Microo Plagiocla	omagnesia dimentary Rocks (mica) m feldspar (K-sp clase cline, etc. nse	ar) (not comm rocks)	Ferromagnesia on in sedimen Olivine Pyroxene Augite Amphibole Hornblen Biotite (mica)	a ntary	
Albite Anorth	(Na-rich - commo hite (Ca-rich - not	on) through common)	Red = Sedim Formi	entary Rock- ng Minerals	

The Four Major Components

Framework

- Sand (and Silt) Size Detrital Grains

• Matrix

- Clay Size Detrital Material

Cement

 Material precipitated post-depositionally, during burial. Cements fill pores and replace framework grains

Pores

- Voids between above components

Sandstone Composition Framework Grains

Norphlet Sandstone, Offshore Alabama, USA Grains are About =< 0.25 mm in Diameter/Length KF = Potassium Feldspar PRF = Plutonic Rock

Fragment P = Pore

Potassium Feldspar is Stained Yellow With a Chemical Dye Pores are Impregnated With Blue-Dyed Epoxy

Porosity in Sandstone

Pores Provide the Volume to Contain Hydrocarbon Fluids

Pore Throats Restrict Fluid Flow

Scanning Electron Micrograph Norphlet Formation, Offshore Alabama, USA

Clay Minerals in Sandstone Reservoirs Fibrous Authigenic Illite

Secondary Electron

Jurassic Norphlet Sandstone Hatters Pond Field, Alabama, USA Significan Permeabilit Reduction

Negligible Porosity Reduction

High Waten Seteration

Migration δfnes Problem

(Photograph by R.L. Kugler)

Clay Minerals in Sandstone Reservoirs Authigenic Chlorite

Secondary Electron

Jurassic Norphlet Sandstone Offshore Alabama, USA

~ 10 µm

- Iron-Rich Varieties React With Acid
- Occurs in **Beeply**IBuried Sandstones With High Reservoir Qualit
- Öccurs as
 Cloiats on
 Gearital
 Surfaces

(Photograph by R.L. Kugler)

Clay Minerals in Sandstone Reservoirs Authigenic Kaolinite

Secondary Electron Micrograph

Carter Santis Blowhorn Creek Oil Unit Black Warrior Basin, Alabama, USA Significant Permeability Reduction

High Irreducible Water Saturation

Migration of Fines Proble m

(Photograph by R.L. Kugler)

Effects of Clays on Reservoir Quality

Influence of Clay-Mineral Distribution on Effective Porosity

	Dispersed	φ _e	Clay e Minerals	
	Clay	Detrital Quartz Grains		
		φ _e		
	Clay Lamination			
	Structural (Rock Fragments,	φ _e		
CI	Rip-Up Clasts, Clay-Replaced Grains)			

Diagenesis

Diagenesis is the Bestositional Chemical Methanical Changes **that**ur in Sedimentary Rocks **Some Diagenetic Effects** Include Compaction **Precipitation of Cement Dissolution of Framework Grains and Cement**

The Effects of Diagenesis Mayance or Degrade Reservoir Qualit

Venezuela

Fluids Affecting Diagenesis

Dissolution Porosity

Dissolution of Framework Grains (Feldspar, for Example) and Cement may Enhance the Interconnected Pore System

This is Called Secondary Porosity

Thin Section Micrograph - Plane Polarized Light Avile Sandstone, Neuquen Basin, Argentina

(Photomicrograph by R.L. Kugler)

Hydrocarbon Generation, Migration, and Accumulation

Organic Matter in Sedimentary

Reflected-Light Micrographf Coal

Rocks

Disseminated Organic Matter Spedimentary Rocks That is Ins@kidblzing Acids, Bases, and Organic Solvents. Vitrinite

> A nonfluorescent type of organic material in petroleum source rocks derived primarily from woody material.

The reflectivity of vitrinite is one of thest indicators of coal rank and theturity of petroleum source rock.

Interpretation of Total Organic Carbon (TOC) (based on early oil window maturity)

Hydrocarbo nGeneratio nPotentia	TOC in Shale (wt. %)	TOC in Carbonates (wt. %)
l Poo	,,,, 0 0-0	
r	5	2
Fai	0.5-1.	0.2-0.
r	0	5
Goo	1.0-2.	0.5-1.
d	0	0
Very Good	2.0-5.	1.0-2.
	0	0
Excellen	>5.	>2.
t	0	0

Schematic Representation of the Mechanism of Petroleum Generation and Destruction

⁽modified from Tissot and Welte, 1984)

Comparison of Several Commonly Used Maturity Techniques and Their Correlation to Oil and Gas Generation Limits

(modified from Foster and Beaumont, 1991, after Dow and O'Conner, 1982)

Generation, Migration, and Trapping of Hydrocarbons

(modified from Magoon a 1994)

Hydrocarbon Traps

Structural traps

- Stratigraphic traps
- Combination traps

Structural Hydrocarbon Traps

Hydrocarbon Traps - Dome

Fault Trap

Stratigraphic Hydrocarbon Traps

Unconformity

Oil/Gas

(modified from Bjorlykke, 1989)

Other Traps

Heterogeneity

Reservoir Heterogeneity in Sandstone

Heterogeneity

- Segments Reservoirs
- Increases Tortuosity of Fluid Flow

Heterogeneity May Result From:

- Depositional Features
- Diagenetic Features

(Whole Core Photograph, Misoa Sandstone, Venezuela)

Reservoir Heterogeneity in Sandstone

Heterogeneity Also May Result From:

Faults

Fractures

Faults and Fractures may be Open (Conduits) or Closed (Barriers) to Fluid Flow

(Whole Core Photograph, Misoa Sandstone, Venezuela)

Geologic Reservoir Heterogeneity

Scales of Geological Reservoir Heterogeneity

Stages In The Generation of An Integrated Geological Reservoir Model

Oil and Gas Formation.mp4