
Lecture №1.11. Programming languages and
programming systems.

A programming language is an artificial language designed to
communicate instructions to a machine, particularly a
COMPUTER. Programming languages can be used to create
programs that control the behavior of a machine and/or to
express algorithms precisely.

Every COMPUTER has the own programming language is a
language of commands or absolute language and can carry out
the programs, written only in this language. In an absolute
language a certain operation which a machine can execute
corresponds every command. However in absolute language,
programing is difficult from the excessive working out in detail of
the program. Therefore already on COMPUTER of the first and
second generation for the increase of the labour of

programmers productivity began to apply languages
programming, not consoling with absolute languages. On
COMPUTER of the third generation an absolute language
practically is not used for programming of tasks, the role of
internal language of COMPUTER was saved only after him.
Several hundred different languages are presently counted
programming which are classified on different signs. Most
general is classification on the degree of dependence of
language from COMPUTER. On this sign languages are
divided by two large groups:
• Computer-dependent languages,
• Computer-independent languages.
Computer-dependent languages, in turn, divide by machine and
machine-oriented.

An absolute language is a programming language, directly
perceived by a computer. Every command of absolute language
is interpreted by an apparatus, executing the indicated
functions. Commands of absolute language in principle are
enough primitive. The only corresponding association of these
commands in the programs in absolute language enables to
describe serious enough algorithms. The sets of commands of
absolute language of modern computers include some very
effective possibilities frequently.

It is said that an absolute language is computer-dependent:
the program, written in absolute language of computer of one
type, as a rule, can not be executed on the computer of other
type, if its absolute language is not identical to the absolute
language of the first computer (or is not expansion in relation to
this language). By another sign machine, or by a vehicle, there
is character of commands dependence: in the commands of

absolute language the names of concrete registers of computer
are specified and processing of data is foreseen in a that
physical form in which they exist in this computer. Most first
computers programed directly in absolute language, and
presently the very small number of the programs is written in
absolute language only.
Computer-oriented languages sometimes named usercodes.
Distinguish two levels of computer-oriented languages. The
languages of the symbol encoding behave to the first level,
otherwise called mnemocodes, and to the second are macro
languages.
A mnemocode differs from the absolute language of
corresponding COMPUTER replacement of digital kodes of
operations alphabetic (mnemonic), and digital addresses of
operands - alphabetic or alphanumeric. During translating into
the language of COMPUTER every command of mnemocode is
replaced by the corresponding command of absolute language
(<< one in one >>).

Application of mnemocode allows to automatize work of
programmer on storage allocation, more precisely, on
appropriating of veritable addresses. It is special useful at
programming for machines with the variable format of
commands. In addition, a mnemocode substantially facilitates
work on drafting of the large programs, when separate program
segments (modules) are made different programmers and unite
in the single program on the stage of loading.

Language the second level is a macro language - along with
the symbolic analogs of computer instructions, which a
mnemocode consists of, assumes the use of macro
instructions, not having direct analogs in an absolute language
also. At translation every macro instruction is replaced by the
group of commands of absolute language (<< one in a few >>).
Application of macro instructions abbreviates the program,
promotes the productivity of programmer. Programmer, using a
computer-oriented language must be well acquainted with the
features of device of machine which the program is made for.

Computer-independent languages are also divided by two
groups on the degree of working out in detail of the program.
Procedure-oriented languages behave to the first group, and
problem-oriented languages behave to the second group.

The procedure-oriented languages are intended for
description of algorithms (procedures) of decision of tasks,
therefore they are also named algorithmic, although the
concept of algorithmic language does not coincide with the
concept of programming language. If a record in algorithmic
language is un mediocre, suitable for an input in COMPUTER
and transformations to the prepared executable code, then
such language is simultaneously a programming language.
Some algorithmic languages, strictly speaking, are not
programming languages, if not to add the special tools to them.
In particular, the algorithmic language Algol-60 becomes a
language programming after plugging in him operators of input
and output and specification of methods of implementation of
some other operations of management an equipment
COMPUTER.

The program in procedure-oriented language does not almost
depend on concrete COMPUTER which a task will decide on. A
word "almost" it is necessary to understand in that sense, that
in most cases the programs of decision of the same task for
different COMPUTERS differ in only some unfundamental
details of external registration, which in transition from
COMPUTER to COMPUTER replaced mechanically.

A structure of the procedure-oriented languages is nearer to
the human language, for example Russian or English, what to
the language of COMPUTER. Therefore translating from the
procedure-oriented language into an absolute language is
carried out on principle "a few in a few". In other words, in most
cases it is here possible to set accordance only between the
group of elementary language constructs and group of
commands COMPUTER, like during translating from English
into Russian of group of words or even group of suggestions
replace the group of words in other language. Word-per-word
translation here is not possible.

Appearance of new economic feasibilities set the problem
before system managers - to create programmatic tools,
providing the operative co-operating of man with COMPUTER
they were named dialog languages.

These works were conducted in two directions. The special
managing languages were created for providing of the
operative affecting passing of tasks which was made on any
early unelaborate (not dialog) languages. Languages which
except for the aims of management would provide description
of algorithms of decision of tasks were developed also.

The necessity of providing of the operative co-operating with
an user demanded maintenance in memory of COMPUTER of
copy of the initial program even after the receipt of object code
in machine codes. At making alteration in the program with the
use of dialog language the system of programming by means of
the special tables sets intercommunication of structures initial
and objective programs. It allows to carry out the required
editorial changes in an object code.

To the problem-oriented languages take the so-called
unprocedural languages. Such languages which do not require
the detailed record of algorithm of decision of task. An user
must only specify problem definition or name the sequence of
tasks from a before geared-up set, to specify basic data and
required form of delivery of results. This information is used by
the special program - generator for generating of executable
code. With expansion of application of the computing
engineering domains there was a necessity to formalize the
presentation of raising and decision of new classes of tasks. It
is necessary it was to create such languages programming,
which, using denotations and terminology in this area, would
allow to describe the required algorithms of decision for the put
tasks, they were become problem are the oriented languages.
These languages, languages are decision-oriented certain
problems, must provide a programmer tools, allowing shortly
and clearly to formulate a task and get results in the required
form.

In relation to a translator the languages all mentioned higher,
except for absolute languages, are an input. In the process of
translation the program in input language is translated into
some internal language, more comfortable for further work of
translator, and then consistently there are a few stages of
treatment. On every stage the translated program appears in
some intermediate language. And, finally, after treatment a
translator the program turns out in object language.

Comparative description of languages. Computer-oriented
languages are universal in the same degree the language of
machine is universal in which, as in them contained tools of
programming and decision on COMPUTER of any tasks, with
which COMPUTERS can manage on the economic feasibilities.
At programming on these languages it is possible to take into
account the features of set of instructions and device of
COMPUTER, that allows to create the high-quality programs.
However computer-oriented languages are enough difficult for a
study, and programing on them is difficult.

Computer-independent languages are effective only for the
certain class of tasks. Out of this class of tasks application of
most high-level languages ineffectively and in general
uselessly. These languages comparatively easily to study.
Programming on them is considerably simpler, than on
computer-oriented languages.

The procedure-oriented languages are programming
languages, where possibility of description of the program is as
to the aggregate of procedures (subprograms);

High-level languages are either procedural-oriented or
problem-oriented. Procedure-oriented languages high level are
universal languages programming which can be used for the
decision of the most various tasks. The problem-oriented
languages target specially at the decision of tasks of concrete
types. Such languages, as Pascal, Cobol, Fortran, Basic are
usually considered procedural-oriented, and such languages,
as GPSS (simulation language) and SPSS (language for
implementation of statistical calculations), - problem-oriented.)

Translators. Any program which translates arbitrary text in
some input language in text in other language is named a
translator. In particular, a source code can be the input
program. A translator transfers it in an object or objective
routine.

It is possible to consider in sense of this determination the
simplest translator, loader, which transfers the program in
conditional addresses, executed as a module of loading, in an
object code in absolute addresses. In this case an input
language (language of loader) and objective language
(COMPUTER language) are the languages of one level.
However more frequent input and objective languages behave
to the different levels. The level of input language is higher than
level of objective language usually.

On the level of input language translators it is accepted to
divide by assemblers, macro assemblers, compilers,
generators.

The input language of assembler is a mnemocode, macro
assembler is a macro language, compiler is the
procedure-oriented language, and generator - problem is the
oriented language. In this connection an input language is
named on the type of translator: assembly language, language
of macro assembler et cetera.

The program, got after treatment a translator, is either directly
carried out on COMPUTER or exposed to treatment other
translator.

Compilers and interpreters. Usually the processes of
translation and execution of the program are divided in time. All
program is translated at first, and then carried out. Translators,
working in such mode, name the translators of compiling type. If
the input language of such translator is the procedure-oriented
language high level, then a translator is named a compiler.

There are translators in which translation and execution is
combined in time, they are named interpreters. The block of
analysis, recognizing operators of input language, set of
subprograms, corresponding to the different operators, and
block, managing all work of interpreter, enters in the
complement of interpreter.

On pointing of control block, the block of analysis looks over
source statements, recognizes their type and possibility of
direct execution determines. Information about possibility of
implementation of operator is passed to the control block, which
causes corresponding subprogram, carrying out actions,
prescribed by an operator.

In such chart a compiler can be done by very simple. An
interpreter is some simpler than compiler, as direct execution of
the recognized operators of input language does unnecessary
actions, related to arrangement of object code, by registration
of it in the single module of loading or as a few modules, if it is
great.

The lack of interpreter consists in the ineffective use of
machine time. For example, at implementation of the cyclic
programs, the same operator it is necessary to interpret
repeatedly. At the repeated implementation of the program,
interpretation has to be executed again, while the translator of
compiling type allows to execute translation one time, and then
to keep the program in machine codes. On the indicated reason
interpreters are used relatively rarely.

Assemblers and macroprocessors
The programming direct requires very much the time and

fraught by errors. The languages of assembler type, allowing to
promote speed of process of programming and decrease the
amount of errors of encoding, were therefore worked out.
Instead of numbers, used for writing of the programs on
absolute languages, rich in content mnemonic reductions and
words of human language are used in the languages of
assembler type. However computers can directly perceive the
program in assembly language, therefore it must be in the

beginning translated into an absolute language. Such
translation is carried out through a program-translator, called an
assembler.
Languages of assembler type also are computer-dependent.
Their commands straight and simply correspond to program
instructions absolute. To accelerate the process of encoding of
the program in assembly language, were worked out and
plugged in assemblers the so-called macroprocessors. A
programmer writes macro instruction as pointing of necessity to
execute an action, described by a few commands in assembly
language. When a macroprocessor during program translation
reads macro instruction, he makes macro expansion - i.e.
generates the row of commands of assembly language,
corresponding to this macro instruction, Thus, the process of
programming is considerably accelerated, as a programmer
has to write the less number of commands for determination of
the same algorithm.

Thank you for your attention

