
Lecture №1.5. Location information in a
memory, addressing methods.

The main function of any processor for the sake of which it
also is created — this performance of commands. The system of
the commands which are carried out by the processor,
represents something similar to the table of the validity of logic
elements or the table of operating modes of more difficult logic
chips. That is it defines logic of operation of the processor and
its reaction to these or those combinations of external events.

Writing of programs for microprocessor system — the major
and often the most labor-consuming development stage of such
system. And for creation of effective programs it is necessary to
have at least the most general idea of system of commands of
the used processor. The most compact and fast programs and
subprograms are created in the Assembler language which

use without knowledge of system of commands is absolutely
impossible, after all the Assembler language represents
symbolical record of digital codes of computer language, codes
of commands of the processor. Certainly, for development of the
software there are every possible software. To use them it is
usually possible and without knowledge of system of commands
of the processor. More often programming languages of high
level, such as Pascal and SI are applied. However the
knowledge of system of commands and the Assembler language
allows to increase several times efficiency of some most
important parts of the software of any micropro-cessor system -
from the microcontroller to the personal computer.
For this reason in this chapter we will consider the main types of
commands which are available for the majority of processors,
and features of their application.
Each command, chosen (read) of memory the processor,
defines algorithm of behavior of the processor on the next some
steps. The code of command speaks about what operation
should be executed to the processor and with what operands
(that is codes of data) where to take initial information for
command execution

and where to place result (if it is necessary). The code of
command can borrow from one to several bytes, and the
processor learns about that, how many command byte he
should read, from the first byte read by it or a word. In the
processor the code of command is deciphered and will be
transformed to a set of the micro operations which are carried
out by separate knots of the processor. But to the developer of
microprocessor systems this knowledge isn't too important, to it
the result of performance of this or that command is important
only.
•2.3.1. Addressing of operands
The most part of commands of the processor works with codes
of data (operands). One commands demand entrance
operands (one or two), others give out target operands (one
operand is more often). Entrance operands are called still as
operands sources, and days off are called as operands
receivers. All these codes of operands (entrance and target)
should settle down somewhere. They can be in internal
registers of the processor (the most convenient and fast
option). They can settle down in system memory (the most
widespread option). At last, they can be in input-output devices
(the most exceptional case).

Definition of a position of operands is made by a command
code. And there are different methods by which the code of
command can define, from where take an entrance operand
and where to place a target operand. These methods are called
as addressing methods. Efficiency of the chosen addressing
methods in much defines overall performance of all processor
as a whole.

2.3.1.1. Addressing methods
The quantity of methods of addressing in various processors

can be from 4 to 16. Let's consider a little typical addressing
methods of the operands used now in the majority of
microprocessors.

Zero-level addressing (fig. 1.5.1) assumes that the operand
(entrance) is in memory directly behind a command code. The
operand usually represents a constant which should be sent
somewhere, to something to add etc. For example, the
command

can consist in adding number 6 to contents of any internal
register of the processor. This number 6 will settle down in
memory, in the program in the address following a code of this
command of addition.

1.5.1. Zero-level addressing

The direct (absolute) addressing (fig. 1.5.2) assumes that
the operand (entrance or target) is in memory to the address
which code is in the program at once behind a command code.
For example, the command can consist in clearing (to make
zero) contents of a cell of memory with the address 1000000.
The code of this address 1000000 will settle down in memory,
in the program in the following address behind a code of this
command of cleaning.

1.5.2.

Register addressing (fig. 1.5.3) assumes that the operand
(entrance or target) is in the internal register of the processor.
For example, the command can consist in sending number from
the zero register to the first. Numbers of both registers (0 and 1)
will be defined by a code of command of transfer.

1.5.3.

Indirect and register (it indirect) addressing assumes that in
the internal register of the processor there is not an operand,
and its address in memory (fig. 1.5.4). For example, the
command can consist in clearing a memory cell with the address
being in the zero register. Number of this register (0) will be
defined by a code of command of cleaning.

1.5.4.

Less often two more methods of addressing meet.
Autoincremental addressing is very close to indirect

addressing, but differs from it that after command execution
contents of the used register increase by unit or on two. This
method of addressing is very convenient, for example, at serial
processing of codes from a data file being in memory. After
processing of any code the address in the register will already
indicate the following code from the massif. When using indirect
addressing in this case it should to increase contents of this
register separate command.

Autodecremental addressing works probably on
autoincremental, but only contents of the chosen register
decrease by unit or on two before command execution. This
addressing is also convenient when processing data files.
Sharing of autoincremental and autodecremental addressings
allows to organize memory of push-down type.

From other widespread methods of addressing it is possible
to mention index methods which assume for calculation of the
address of an operand addition to contents of the register of the
set constant (index). The code of this constant settles down in
memory directly behind a command code.

Let's note that the choice of this or that method of addressing
substantially defines time of command execution. The fastest
addressing — is register as she doesn't demand additional
cycles of an exchange on the highway. If addressing demands
the appeal to memory, time of command execution will increase
at the expense of duration of necessary cycles of the appeal to
memory. It is clear that the more internal registers at the
processor, the more often and more freely it is possible to apply
register addressing, and with that the system as a whole
quicker will work.

• 2.3.1.2. Memory segmentation
Speaking about addressing, it is impossible to bypass a

question of the memory segmentation applied in some
processors, for example in IBM PC compatible processors of
personal computers.

In the Intel 8086 processor segmentation of memory is
organized as follows.

All memory of system is represented not in the form of
continuous space, and in the form of several pieces — given
size segments (on 64 Kb) which situation in space of
memory can be changed a program way.

For storage of codes of addresses of memory separate
registers, and pairs of registers are used not:

• the segment register defines the address of the beginning of
a segment (that is the provision of a segment in memory);

• the index register (the shift register) defines the provision of
the working address in a segment.

Thus the physical 20-digit address of memory exposed on the
external tire of the address, is formed how is shown on fig.
1.5.5, that is by addition of shift and the segment address with
shift on 4 bits. The provision of this address in memory is
shown on fig. 1.5.6.

1.5.5.

1.5.6.

The segment can begin only on 16-byte limit of memory (as
the address of the beginning of a segment, in fact, has four
younger zero categories, apparently from fig. 1.5.5), that is from
the address, multiple 16. These admissible borders of
segments are called as limits of paragraphs.

Let's note that segmentation introduction, first of all, is
connected with that internal registers of the processor 16-digit,
and the physical address of memory 20-digit (the 16-digit
address allows to use memory only in 64 Kb that is obviously
not enough). In the MC68000 processor which has appeared at
the same time of Motorola firm internal registers 32-bit therefore
there problems of segmentation of memory don't arise.

More difficult methods of segmentation of memory are applied
also. For example, in the Intel 80286 processor in the so-called
protected mode the address of memory is calculated according
to fig. 1.5.7.

1.5.7.

The base (initial) address of segments, and the codes of
selectors defining addresses in memory on which descriptors
(that is descriptors) segments are stored in this case is stored
in the segment register not. The memory area with descriptors
is called as the table of descriptors. Each descriptor of a
segment contains the base address of a segment, the size of a
segment (from 1 to 64 Kb) and its attributes. The base address
of a segment has word length of 24 bits that provides
addressing of 16 Mb of physical memory.

Thus, on the adder calculating the physical address of
memory, contents of the segment register, as in the previous
case, and the base address of a segment from the table of
descriptors move not.

Even more difficult method of addressing of memory with
segmentation is used in the Intel 80386 processor and in later
models of processors of Intel firm. This method is illustrated fig.
1.5.8.

1.5.8.

The memory address (the physical address) is calculated in
three stages. At first the so-called effective address (32-bit) by
summation of three components is calculated: bases, an index
and shift (Base, Index, Displacement), and is possible
multiplication of an index to scale (Scale). These components
have the following sense:

• shift — is 8-, 16-or 32-bit number included in command.
• base — these contents of the base register of the

processor. Usually it is used for the instruction for the beginning
of some array.

• an index — these contents of the index register of the
processor. Usually it is used for a choice of one of array
elements.

• the scale — is a multiplier (it can be equal 1, 2, 4 or 8),
specified in a command code by which before summation with
other components the index is multiplied. It is used for the
indication of the size of an element of the array.

Then the special block of segmentation calculates the 32-bit
linear address which represents the sum of the base address of
a segment from the segment register with the effective address.
At last, the physical 32-bit address of memory is formed by
transformation of the linear address by the block of page
readdressing which translates the linear address in physical
pages on 4 Kb.

In any case segmentation allows to allocate in memory one or
several segments for data and one or several segments for
programs. Transition from one segment to another is reduced
only to change of contents of the segment register. Sometimes
it happens very conveniently. But for the programmer to work
with the segmented memory it is usually more difficult, than with
the continuous, not segmented memory as it is necessary to
watch borders of segments, behind their description, switching
etc.

• 2.3.1.3. Addressing of bytes and words

Many processors having word length 16 or 32, are capable to
address not only the whole word in memory (16-digit or
32-bit), but also separate bytes. In each word the address is
thus allocated for each byte.

So, in case of 16-digit processors all words in memory (16-digit)
have even addresses. And the bytes entering into these
words, can have both even addresses, and odd.

For example, let the 16-digit cell of memory has the address
23420, and the code 2А5Е is stored in it (fig. 1.5.9).

1.5.9.

At the appeal to the whole word (with contents 2А5Е) the
processor exposes the address 23420. At the appeal to
younger byte of this cell (with contents 5Е) the processor
exposes the same address 23420, but uses the command
addressing byte, instead of a word. At the appeal to the senior
byte of the same cell (with contents 2А) the processor exposes
the address 23421 and uses the command addressing byte.
The 16-digit cell of memory following one after another with
contents 487F will have the address 23422, that is besides the
even. Its bytes will have addresses 23422 and 23423.

For distinction of byte and nice cycles of an exchange for
highways in the tire of management the special signal of a byte
exchange is provided. For work with bytes special commands
are entered into system of commands of the processor or
methods of byte addressing are provided.

• 2.3.2. Processor registers
As it was already mentioned, internal registers of the processor

represent scratch-pad memory of the small size which is
intended for temporary storage of office information or data.
The number of registers in different processors can be from 6
— 8 to several tens. Registers can be universal and
specialized. Specialized registers which are present at the
majority of processors — it is the register - the counter of
commands, the register of a condition (PSW), the register of
the index of a stack. Other registers of the processor can be
both universal, and specialized.

For example, in the 16-digit T-11 processor of DEC firm there
were 8 registers of general purpose (RON) and one register
of a condition. All registers had on 16 categories. From
registers of general purpose one was taken away under the
counter of commands, another — under the stack index. All
other registers of general purpose are completely
interchangeable, that is have universal appointment, can
store both data, and addresses (indexes), indexes etc. The
most admissible memory size for this processor made 64 Kb
(the memory address 16-digit).

In the 16-digit MC68000 processor of Motorola firm there
were 19 registers: 16-digit register of a condition, 32-bit register
of the counter of commands, 9 registers of the address (32-bit)
and 8 registers of data (32-bit). Two registers of the address are
taken away under stack indexes. The most admissible volume
of addressed memory — 16 Mb (the external tire of the address
24-digit). All 8 registers of data are interchangeable. 7 registers
of the address – too are interchangeable.

In the 16-digit Intel 8086 processor which base in the line of
the processors used in personal computers, became realized
essentially other approach. Each register of this processor has
the special appointment, and replace each other registers can
only partially or can't in general. Let's stop on features of this
processor in more detail.

The processor 8086 has 14 registers word length on 16 bits.
From them four registers (AX, BX, CX, DX) — is registers of
data, each of which besides storage of operands and results of
operations has also the specific appointment:

• the register AX — multiplication, division, an exchange with
input-output devices (input and output command);

• the register BX — the base register in address calculations;
• the register CX — the counter of cycles;
• the register DX — definition of the address of input-output.
For registers of data there is a possibility of separate use of

both bytes (for example, for the register AX they have AL
designations the-junior byte and AH — the senior byte).

The following four internal registers of the processor — it is
segment registers, each of which defines the provision of one of
working segments (fig. 1.5.10):

• the register CS (Code Segment) corresponds to a segment
of the commands executed at present;

• the register DS (Data Segment) corresponds to a segment
of data with which the processor works;

• the register ES (Extra Segment) corresponds to an
additional segment of data;

• the register SS (Stack Segment) corresponds to a stack
segment.

1.5.10.

In principle, all these segments can and be blocked for
optimum use of space of memory. For example, if the program
occupies only a part of a segment, the segment of data can
begin right after completion of work of the program (with
accuracy of 16 bytes), instead of after the termination of all
segment of the program.

The following five registers of the processor (SP — Stack
Pointer, BP — Base Pointer, SI — Source Index, DI —
Destination Index, IP — Instruction Pointer) serve as indexes
(that is define shift within a segment). For example, the counter
of commands of the processor is formed by pair of registers CS
and IP, and the stack index — pair of registers SP and SS. The
registers SI, are used by DI in line operations, that is at serial
processing of several cells of memory by one command.

The last register FLAGS — is the register of a condition of the
processor (PSW). From its 16 categories are used only nine
(fig. 1.5.11): CF (Carry Flag) — a transfer flag at arithmetic
operations, PF (Parity Flag) — a flag of parity of result, AF
(Auxiliary Flag) — a flag of additional transfer, ZF (Zero Flag) —
a flag of zero result, SF (Sign Flag) — a sign flag (TF (Trap
Flag) coincides with the senior bit of result) — a flag of a
step-by-step mode (it is used when debugging), IF
(Interrupt-enable Flag) — a flag of permission of hardware
interruptions, DF (Direction Flag) — a direction flag at line
operations, OF (Overflow Flag) — an overflow flag.

1.5.11.

Bits of the register of a condition are established or cleared
depending on result of execution of the previous command and
used by some commands of the processor. Bits of the register
of a condition can be established and be cleared also by
special commands of the processor (about system of
commands of the processor it will be told in the following
section).

In many processors the special register called by the
accumulator (that is with the store) is allocated. Thus, as a rule,
only this register accumulator can participate in all operations,
only through it interaction with input-output devices can be
made. Sometimes in it the result of any executed command (in
this case speak even about "storage" architecture of the
processor) is located. For example, in the processor 8086 AH it
is possible to consider the register of data as a peculiar

accumulator as he surely participates in multiplication and
division commands, and also only through it it is possible to
send data to the device of input-output and from the
input-output device. Allocation of the special register
accumulator simplifies structure of the processor and
accelerates transfers of codes in the processor, but in certain
cases slows down system work as a whole as all flow of
information should pass through one register accumulator. In a
case when some registers of the processor are completely
interchangeable, such problems don't arise.

Thank you for your attention

