
Lecture №1.8.
Methods and types of archiving. Main

algorithms for data compression.
A file archiver is a computer program that combines a

number of files together into one archive file, or a series of
archive files, for easier transportation or storage. Many file
archivers employ Archive formats that provide lossless data
compression to reduce the size of the archive which is often
useful for transferring a large number of individual files over a
high latency network like the Internet.

The most basic archivers just take a list of files and
concatenate their contents sequentially into the archive. In
addition the archive must also contain some information about at
least the names and lengths of the originals, so that proper
reconstruction is possible. Most archivers also store metadata
about a file that the operating system provides, such as
timestamps, ownership and access control.

The process of making an archive file is called archiving or
packing. Reconstructing the original files from the archive is
termed unarchiving, unpacking or extracting.

An archive file is a file that is composed of one or more
files along with metadata that can include source volume and
medium information, file directory structure, error detection
and recovery information, file comments, and usually employs
some form of lossless compression. Archive files may also be
encrypted in part or as a whole. Archive files are used to
collect multiple data files together into a single file for easier
portability and storage.

Computer archive files are created by File archiver software,
Optical disc authoring software, or Disk image software that
uses an archive format determined by that software. The file
extension or file header of the archive file are indicators of the
file format used.

Archive files are sometimes accompanied by separate parity
archive (PAR) files that allow for additional error detection and
recovery, particularly in recovery of missing package files in a
multi-file archive.

Archives can have extensions like .zip, .rar, .tar and etc.
Lossless data compression is a class of data compression

algorithms that allows the exact original data to be
reconstructed from the compressed data. The term lossless is
in contrast to lossy data compression, which only allows an
approximation of the original data to be reconstructed, in
exchange for better compression rates.

Lossless data compression is used in many applications.
For example, it is used in the popular ZIP file format and in the
Unix tool gzip. It is also often used as a component within lossy
data compression technologies.

Lossless compression is used when it is important that the
original and the decompressed data be identical, or when no
assumption can be made on whether certain deviation is
uncritical. Typical examples are executable programs and
source code. Some image file formats, like PNG or GIF, use
only lossless compression, while others like TIFF and MNG
may use either lossless or lossy methods.

Lossless compression techniques
Most lossless compression programs do two things in

sequence: the first step generates a statistical model for the
input data, and the second step uses this model to map input
data to bit sequences in such a way that "probable" (e.g.
frequently encountered) data will produce shorter output than
"improbable" data.

The primary encoding algorithms used to produce bit
sequences are Huffman coding and arithmetic coding.
Arithmetic coding achieves compression rates close to the

best possible for a particular statistical model, which is given
by the information entropy, whereas Huffman compression is
simpler and faster but produces poor results for models that
deal with symbol probabilities close to 1.
There are two primary ways of constructing statistical models:
in a static model, the data is analyzed and a model is
constructed, then this model is stored with the compressed
data. This approach is simple and modular, but has the
disadvantage that the model itself can be expensive to store,
and also that it forces a single model to be used for all data
being compressed, and so performs poorly on files containing
heterogeneous data. Adaptive models dynamically update the
model as the data is compressed. Both the encoder and
decoder begin with a trivial model, yielding poor compression
of initial data, but as they learn more about the data
performance improves. Most popular types of compression
used in practice now use adaptive coders.

Lossless compression methods may be categorized
according to the type of data they are designed to compress.
While, in principle, any general-purpose lossless compression
algorithm (general-purpose meaning that they can compress
any bitstring) can be used on any type of data, many are unable
to achieve significant compression on data that is not of the
form for which they were designed to compress. Many of the
lossless compression techniques used for text also work
reasonably well for indexed images.

Text
Statistical modeling algorithms for text (or text-like binary data

such as executables) include:
• Context Tree Weighting method (CTW)
• Burrows-Wheeler transform (block sorting preprocessing

that makes compression more efficient)
• LZ77 (used by DEFLATE)
• LZW

Multimedia
Techniques that take advantage of the specific characteristics

of images such as the common phenomenon of contiguous 2-D
areas of similar tones. Every pixel but the first is replaced by the
difference to its left neighbor. This leads to small values having a
much higher probability than large values. This is often also
applied to sound files and can compress files which contain
mostly low frequencies and low volumes. For images this step
can be repeated by taking the difference to the top pixel, and then
in videos the difference to the pixel in the next frame can be
taken.

A hierarchical version of this technique takes neighboring pairs
of data points, stores their difference and sum, and on a higher
level with lower resolution continues with the sums. This is called
discrete wavelet transform. JPEG2000 additionally uses data
points from other pairs and multiplication factors to mix then into
the difference. These factors have to be integers so that the
result is an integer under all circumstances. So the values are
increased, increasing file size, but hopefully the distribution of
values is more peaked.

The adaptive encoding uses the probabilities from the
previous sample in sound encoding, from the left and upper
pixel in image encoding, and additionally from the previous
frame in video encoding. In the wavelet transformation the
probabilities are also passed through the hierarchy.

Huffman tree generated from the exact frequencies of the text
"this is an example of a huffman tree". The frequencies and
codes of each character are below. Encoding the sentence with
this code requires 135 bits, not counting space for the tree.

Char Freq Code Char Freq Code
space 7 111 l 1 11001
a 4 010 o 1 00110
e 4 000 p 1 10011
f 3 1101 r 1 11000
h 2 1010 u 1 00111
i 2 1000 x 1 10010
m 2 0111
n 2 0010
s 2 1011
t 2 0110

In computer science and information theory, Huffman coding is
an entropy encoding algorithm used for lossless data
compression. The term refers to the use of a variable-length
code table for encoding a source symbol (such as a character in
a file) where the variable-length code table has been derived in
a particular way based on the estimated probability of
occurrence for each possible value of the source symbol. It was
developed by David A. Huffman while he was a Ph.D. student at
MIT, and published in the 1952 paper "A Method for the
Construction of Minimum-Redundancy Codes".
Huffman coding uses a specific method for choosing the
representation for each symbol, resulting in a prefix code
(sometimes called "prefix-free codes") (that is, the bit string
representing some particular symbol is never a prefix of the bit
string representing any other symbol) that expresses the most
common characters using shorter strings of bits than are used

for less common source symbols. Huffman was able to design
the most efficient compression method of this type: no other
mapping of individual source symbols to unique strings of bits
will produce a smaller average output size when the actual
symbol frequencies agree with those used to create the code. A
method was later found to do this in linear time if input
probabilities (also known as weights) are sorted.
For a set of symbols with a uniform probability distribution and a
number of members which is a power of two, Huffman coding is
equivalent to simple binary block encoding, e.g., ASCII coding.
Huffman coding is such a widespread method for creating prefix
codes that the term "Huffman code" is widely used as a
synonym for "prefix code" even when such a code is not
produced by Huffman's algorithm.

Although Huffman coding is optimal for a symbol-by-symbol
coding (i.e. a stream of unrelated symbols) with a known input
probability distribution, its optimality can sometimes accidentally
be over-stated. For example, arithmetic coding and LZW coding
often have better compression capability. Both these methods
can combine an arbitrary number of symbols for more efficient
coding, and generally adapt to the actual input statistics, the
latter of which is useful when input probabilities are not precisely
known or vary significantly within the stream. In general,
improvements arise from input symbols being related (e.g., "cat"
is more common than "cta").

Lempel–Ziv–Welch (LZW) is a universal lossless data
compression algorithm created by Abraham Lempel, Jacob Ziv,
and Terry Welch. It was published by Welch in 1984 as an
improved implementation of the LZ78 algorithm published by
Lempel and Ziv in 1978. The algorithm is designed to be fast to
implement but is not usually optimal because it performs only
limited analysis of the data.

Encoding
A dictionary is initialized to contain the single-character

strings corresponding to all the possible input characters (and
nothing else). The algorithm works by scanning through the
input string for successively longer substrings until it finds one
that is not in the dictionary. When such a string is found, it is
added to the dictionary, and the index for the string less the last
character (i.e., the longest substring that is in the dictionary) is
retrieved from the dictionary and sent to output. The last input
character is then used as the next starting point to scan for
substrings.

In this way successively longer strings are registered in the
dictionary and made available for subsequent encoding as single
output values. The algorithm works best on data with repeated
patterns, so the initial parts of a message will see little
compression. As the message grows, however, the compression
ratio tends asymptotically to the maximum.

Decoding
The decoding algorithm works by reading a value from the

encoded input and outputting the corresponding string from the
initialized dictionary. At the same time it obtains the next value
from the input, and registers to the dictionary the concatenation
of that string and the first character of the string obtained by
decoding the next input value. The decoder then proceeds to the
next input value (which was already read in as the "next value" in
the previous pass) and repeats the process until there is no more
input, at which point the final input value is decoded without any
more additions to the dictionary.

In this way the decoder builds up a dictionary which is
identical to that used by the encoder, and uses it to decode
subsequent input values. Thus the full dictionary does not need
be sent with the encoded data; just the initial dictionary
containing the single-character strings is sufficient (and is
typically defined beforehand within the encoder and decoder
rather than being explicitly sent with the encoded data.)

The method became widely used in the program compress,
which became a more or less standard utility in Unix systems
circa 1986. (It has since disappeared from many for both legal
and technical reasons, but as of 2008 at least FreeBSD
includes the utility of compress and uncompress as a part of the
distribution.) Several other popular compression utilities also
used the method, or closely related ones.

It became very widely used after it became part of the GIF
image format in 1987. It may also (optionally) be used in TIFF
files.

LZW compression provided a better compression ratio, in
most applications, than any well-known method available up to
that time. It became the first widely used universal data
compression method on computers. It would typically compress
large English texts to about half of their original sizes.

Today, an implementation of the algorithm is contained within
the popular Adobe Acrobat software program.

Run-length encoding (RLE) is a very simple form of data
compression in which runs of data (that is, sequences in which
the same data value occurs in many consecutive data elements)
are stored as a single data value and count, rather than as the
original run. This is most useful on data that contains many such
runs: for example, relatively simple graphic images such as
icons, line drawings, and animations. It is not recommended for
use with files that don't have many runs as it could potentially
double the file size.

JBIG is an image compression standard for bi-level images,
developed by the Joint Bi-level Image Experts Group. It is
suitable for both lossless and lossy compression. According to a
press release from the Group, in its lossless mode JBIG2
typically generates files one third to one fifth the size of Fax
Group 4 and one half to one quarter the size of JBIG, the
previous bi-level compression standard released by the Group.
JBIG2 has been published in 2000 as the international standard
ITU T.88, and in 2001 as ISO/IEC 14492.

JBIG is a method for compressing bi-level (two-color) image
data. The acronym JBIG stands for Joint Bi-level Image Experts
Group, a standards committee that had its origins within the
International Standards Organization (ISO). The compression
standard they developed bears the name of this committee.

The main features of JBIG are:
• Lossless compression of one-bit-per-pixel image data
• Ability to encode individual bitplanes of multiple-bit pixels
• Progressive or sequential encoding of image data

Lossy compression
A lossy compression method is one where compressing data

and then decompressing it retrieves data that is different from
the original, but is close enough to be useful in some way. Lossy
compression is most commonly used to compress multimedia
data (audio, video, still images), especially in applications such
as streaming media and internet telephony. By contrast,
lossless compression is required for text and data files, such as
bank records, text articles, etc. In many cases it is
advantageous to make a master lossless file which can then be
used to produce compressed files for different purposes; for
example a multi-megabyte file can be used at full size to
produce a full-page advertisement in a glossy magazine, and a
10 kilobyte lossy copy made for a small image on a web page.

Lossy and lossless compression
It is possible to compress many types of digital data in a way

which reduces the amount of information stored, and
consequently the size of a computer file needed to store it or the
bandwidth needed to stream it, with no loss of information.
Take, for example, a picture. It is converted to a digital file by
considering it to be an array of dots, and specifying the colour
and brightness of each dot. If the picture contains an area of the
same colour, it can be compressed without loss by saying "200
red dots" instead of "red dot, red dot, ...(197 more times)..., red
dot".

The original contains a certain amount of information; there is
a lower limit to the size of file that can carry all the information.
As an intuitive example, most people know that a compressed
ZIP file is smaller than the original file; but repeatedly
compressing the file will not reduce the size to nothing.

In many cases files or data streams contain more information
than is needed. For example, a picture may have more detail
than the eye can distinguish when reproduced at the largest
size intended; an audio file does not need a lot of fine detail
during a very loud passage. Developing lossy compression
techniques as closely matched to human perception as possible
is a complex task. In some cases the ideal is a file which
provides exactly the same perception as the original, with as
much digital information as possible removed; in other cases
perceptible loss of quality is considered a valid trade-off for the
reduced data size.

JPEG compression
The compression method is usually lossy, meaning that some

original image information is lost and cannot be restored
(possibly affecting image quality.) There are variations on the
standard baseline JPEG that are lossless; however, these are
not widely supported.

There is also an interlaced "Progressive JPEG" format, in
which data is compressed in multiple passes of progressively
higher detail. This is ideal for large images that will be
displayed while downloading over a slow connection, allowing
a reasonable preview after receiving only a portion of the data.
However, progressive JPEGs are not as widely supported, and
even some software which does support them (such as some
versions of Internet Explorer) only displays the image once it
has been completely downloaded.

There are also many medical imaging systems that create
and process 12-bit JPEG images. The 12-bit JPEG format has
been part of the JPEG specification for some time, but again,
this format is not as widely supported.

JPEG stands for Joint Photographic Experts Group, which is
a standardization committee. It also stands for the compression
algorithm that was invented by this committee.

There are two JPEG compression algorithms: the oldest one
is simply referred to as ‘JPEG’ within this page. The newer
JPEG 2000 algorithm is discussed on a separate page. Please
note that you have to make a distinction between the JPEG
compression algorithm, which is discussed on this page, and
the corresponding JFIF file format, which many people refer to
as JPEG files and which is discussed in the file format section.

JPEG is a lossy compression algorithm that has been
conceived to reduce the file size of natural, photographic-like
true-color images as much as possible without affecting the
quality of the image as experienced by the human sensory
engine. We perceive small changes in brightness more readily
than we do small changes in color. It is this aspect of our
perception that JPEG compression exploits in an effort to
reduce the file size

Thank you for your attention

