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Mathematical Backgrounds.
Information Theory 

In  1949, Shannon provides a theoretical foundations for 
cryptography based on his fundamental work on information theory. 
He measured the theoretical secrecy of a cipher by the uncertainty 
about the plaintext given the received ciphertext. If, no matter how 
much ciphertext is intercepted, nothing can be learned about the 
plaintext, the cipher achieves perfect secrecy.
Entropy and Equivocation

Information theory measures the amount of information in a 
message by the average number of bits needed to encoded all possible 
messages in an optimal encoding. The Sex field in a database, for 
example, contains only one bit of information because it can be 
encoded with one bit (Male can be represented by “0”, Female by 
“1”).  If the field is represented by an ASCII character encoding of the 
character strings “MALE” and “FEMALE”, it will take up more 
space, but will not contain any more information.
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Mathematical Backgrounds.
Information Theory 

The amount of information in a message is formally measured by 
the entropy of the message. The entropy is a function of the 
probability distribution over the set of all possible messages. Let 
X1,..., Xn   be n possible messages occurring with probabilities 
p(X1),...,p(Xn), the sum of this probabilities p(Xi), i=1,...,n equals to 
one. The entropy of a given message is defined by the weighted 
average:

H(X)=−Σi
np(Xi)log2 p(Xi).

As the sum taken over all messages X: 

H(X)=–ΣXp(X)log2 p(X)=ΣXp(X)log2 [1/p(X)].
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Mathematical Backgrounds.
Information theory in Examples 

Intuitively, each term log2 [1/p(X)] in last expression represents 
the number of bits needed to encode message X in an optimal 
encoding that is, one which minimizes the expected number of bits 
transmitted over the channel. The weighted average H(X) gives the 
expected number of bits in optimally encoded messages. 

Because 1/p(X) decrease as p(X) increase, an optimal encoding 
uses short codes for frequently occurring messages at the expense of 
using longer ones for infrequently messages. This principle is applied 
in Morse code, where the most frequently used letters are assigned 
the shortest codes. 

“Huffmen Code”  are optimal codes assigned to characters, 
words, machine instructions, or phases. Single – character Huffmen 
code are frequently used to compact large files. COMPACT program 
on UNIX reduced its storage requirements by 38%, which is typical 
for text files.
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Mathematical Backgrounds.
Information theory in Examples 

Example. Let n=3, and let the 3 messages be the letters A,B, and 
C, where p(A)=1/2 and p(B)=p(C)=1/4. Then

log2(1/ p(A))=log22= 1;
log2(1/ p(B))=log2(1/p(C))=log24=2;

what confirming our earlier observation, that for frequently occurring 
message the minimal number of bits is needed for optimal encoding.

Example. Suppose there are two possibilities: Mail and Female, 
both equally likely; thus p(Male)=p(Female)=1/2. Then

H(X)=p(Male)log2(1/ p(Male))+p(Female)log2(1/ p(Female))=
=(1/2)(log22)+(1/2)(log22)= 1,

what confirming our earlier observation that there is 1 bit of 
information in the Sex field of a database. 

The following example illustrate the application of entropy to 
determine the information content of a massage.
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 Example. Let n=3, and let the 3 messages be the letter A,B,and C, 
where p(A)=1/2, p(B)=p(C)=1/4. Then

H(X)=(1/2)log22+2(1/4)log24=0.5+1.0=1.5.

An optimal encoding assigns a 1-bit code to A and 2-bit codes to B 
and C. For example, A can encoded with the bit 0, while B and C can be 
encoded with two bits each, 10 and 11. Using this encoding, the 8-letter 
sequence ABCAABAC is encoded as the 12-bit sequence 010110010011 
as shown next:

A B C A A B A C
0 10 11 0 0 10 0 11

The average number of bits per letter is 12/8=1,5.

Mathematical Backgrounds.
Information theory in Examples 
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Mathematical Backgrounds
  Information theory in Examples 

For a given language, consider the set of all messages N character 
long. The rate of the language for messages of length N is defined by

r=H(X)/N,
That is, the average number of bits of information in each character.

The simplest solution to determine the rate of language (absolute 
rate R) based on the assumption that all letters have the same probability 
of occurring within the all possible messages, as well as all possible 
sequences of characters are equally likely. If there are L characters in the 
language, then the absolute rate is given by 

R=log2L,
For English language this probability is equal to L=1/26, then 

R=log2L=log226 =4,7bit/letter.
The absolute rate of the language is defined to be the maximum 

number of bits of information that could be encoded in each character.
The actual rate of English is thus considerably less than its absolute 

rate. The reason is that English, like all natural languages, is highly 
redundant. For example, the phrase “occurring frequently” could be 
reduced by 58% to “crng frg” without loss of information.
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Mathematical Backgrounds
Information theory in Examples 

1.Single letter frequency distributions.

Then r=H(1-grams)/1=4.15. 
2.Diagrams frequency distributions. Certain diagrams (pair of 

letters) such as TH and  EN occur much more frequently than others. 
Some diagrams (e.g., OZ) never occur in meaningful messages 
(acronyms are on exception). Then r=H(2-grams)/2=3.62. 

3.Trigrams frequency distributions. The proportion of meaningful 
sequences decreases when trigrams are considered (e.g. BB is 
meaningful but BBB is not). Such as THE and ING occur much more 
frequently than others. Then r=H(3-grams)/2=3.22. 

A 
B 
C
D
E
F
G

 0.0804
 0.0154
 0.0306
 0.0399
 0.1251
 0.0230
 0.0196

H
I 
J 
K
L
M
N 

0.0549
0.0726
0.0016
0.0067
0.0414
0.0253
0.0709

O
P
Q
R
S
T
U

0.0760
0.0200
0.0011
0.0612
0.0654
0.0925
0.0271

V
W
X
Y
Z

0.0099
0.0192
0.0019
0.0173
0.0009
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The rate of a language (entropy per character) is determined by 
estimating the entropy of N-grams for increasing values of N. As N 
increases, the entropy per character decreases because there are fewer 
choices and certain choices are much more likely. For N→∞ ,r=1÷1,5.

The redundancy of a language with rate r and absolute rate R is 
defined     by D=R−r.  For R=4.7 and rate r=1, D=3.7, whence the 
ratio D/R shows  English to be about 79% redundant; for r=1.5, D=3.2, 
implying a redundancy of 68%. 

Mathematical Backgrounds
Information theory in Examples 
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Mathematical Backgrounds     
Perfect Secrecy 

Shannon studied the information theoretic properties of 
cryptographic systems in terms of three classes of information:

1.Plaintext messages M occurring with prior probabilities p(M), 
where ΣMp(M)=1.

2.Ciphertext messages C occurring with prior probabilities p(C), 
where ΣCp(C)=1.

3.Keys K occurring with prior probabilities p(K), where ΣKp(K)=1.
Let pc(M) be the probability that message M was sent given that C 

was received (thus C is the encryption of message M). Perfect secrecy is 
defined by the condition.

pC(M)=p(M)
That is, intercepting the ciphertext gives a cryptanalyst no additional 
information.
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Mathematical Backgrounds     
Perfect Secrecy 

A necessary and sufficient condition for perfect secrecy is that for 
every C,

pM(C)=p(C) for all M,
This means the probability of receiving a particular ciphertext C 

given that M was sent (enciphered under the same key) is the same as the 
probability of receiving C given that some other message M’ was sent 
(enciphered under a different key).

Perfect secrecy is possible using completely random keys at least as 
long as the messages they encipher.
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Mathematical Backgrounds         
Perfect Secrecy

Next figure illustrates a perfect secrecy system with four messages, 
all equally likely, and four keys, also equally likely.

M1

M2

M4

M3 C3

C4

C2

C1k1

k1

k1

k1

k2

k2

k2

k2

k3

k3
k3

k3

k4k4

k4

k4

Here pC(M)=p(M)=1/4, and pM(C)=p(C)=1/4 for all M and C.  A 
cryptoanalyst intercepting one of the ciphertext messages C1 C2 C3 or 
C4 would have no way of determining which of the four keys was used 
and, therefore, whether the correct message is M1 M2 M3 or M4 
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Mathematical Backgrounds         
Perfect Secrecy

Perfect secrecy requires that the number of keys must be at least as 
great as the number of possible messages. Otherwise there would be 
some message M such that for given C, no K decipher C into M, 
implying pC(M)=0. The cryptanalyst could thereby eliminate certain 
possible plaintext message from consideration, increasing the chances 
of breaking the cipher.

A cipher using a nonrepeating random key stream such as the one 
described in the preceding example is called a one-time pad.One-time 
pads are the only ciphers that achieve perfect secrecy. 

The implementation of one-time pads in computer systems is based 
on an ingenious device designed by Gilbert Verman in 1917. Letting 
M=m1m2...  denotes a plaintext bit stream and K=k1k2... a key bit 
stream, the Verman cipher generates a ciphertext bit stream 
C=EK(M)=c1c2... , where ci=(mi+ki) mod 2, i=1,2,... . The Verman 
cipher is efficiently implemented in microelectronics by taking the 
“exclusive-or” of each plaintext/key pair ci=mi+ki  Because ki+ki =0 
for ki=0 or 1, deciphering is performed with the same operation: ci+ki = 
mi+ki+ki=mi .            
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Mathematical Backgrounds         
Perfect Secrecy

Example M=0111001101010101, K=0101011100101011, here 
the key stream represent the stream of random bits with probabilities 
p(0)=p(1)=0.5.

Enciphering procedure: C=M⊕K=0111001101010101⊕                             
⊕ 0101011100101011=0010010001111110.

Deciphering procedure: M=C⊕K=0010010001111110⊕                             
⊕ 0101011100101011= 0111001101010101.
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Mathematical Backgrounds         
Complexity Theory

The strength of a cipher is determined by the computational 
complexity of the algorithms used to solve the cipher. The 
computational complexity of an algorithm is measured by its time T 
and space S requirements are expressed as function f(n) of n, and n 
characterized the size of the input. This function is typically bounded 
as an “order-of-magnitude” of the form O(nt), where t can take any 
constant value.

For example if f(n) is a polynomial of the form f(n)=atn
t+

at-1
 nt-1 +…+a1n

1 +a0  for constant t, then f(n)=O(nt); that is, all 
constants and low-order terms are ignored.

Measuring the time and space requirements of an algorithm by its 
order-of-magnitude allows to see how the time and space requirements 
grows as the size of the input increases. For example, if T=O(n2), 
doubling the size of the input quadruples the running time. Table 2.4.1 
shows the running times of different classes of algorithms for n=106.
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Mathematical Backgrounds         
Complexity Theory

Class Complexity
Number of 
operations
for n=106

Real time

Polynomial
   Constant
   Linear
   Quadratic
   Cubic
Exponential

O(1)
O(n)
O(n2)
O(n3)
O(2n)

1
106

1012

1018

10301030

1 μsec
1 second
10 days
27397 years
10301016 years
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Mathematical Backgrounds         
Complexity Theory

Complexity theory classifies a problem according to the minimum 
time and space needed to solve the hardest instances of the problem 
based on some abstract model of computation.

The class P consists of all problems solvable in polynomial time.
The class NP (nondeterministic polynomial) consists of all 

problems solvable in polynomial time on nondeterministic model of 
computation.

The class NP-complete has the property that if any one of the 
problems is in P, then all NP problems are in P and P=NP. Thus the 
NP-complete problems are the “hardest” problem in NP. The fastest 
known algorithms for systematically solving these problems have 
worst-case time complexities exponential in the size n of the problem. 
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Mathematical Backgrounds         
Complexity Theory

It have been shown that NP-complete problems might make 
excellent candidates for ciphers because they cannot be solved 
(systematically) in polynomial time by any known techniques. 
NP-complete problems could be adapted to cryptographic use. To 
construct such a cryptographic system, secret “trapdoor” 
information is inserted into a computationally hard problem that 
involves inverting a one-way function. 

A function f is a one-way function if it is easy to compute f(x) 
for any x in the domain of f, while, for almost all y in the range of f, 
it is computationally infeasible to compute f-1(y) even if f is known. 
It is a trapdoor one-way function if it is easy to compute f-1(y) given 
certain additional information. The additional information, usually is 
the secret deciphering key.


