
Information Systems Design

Goals of this course
• To provide f thorough and systematic treatment of conceptual and logical

design
• To base this treatment on the Entity-Relation model
• To advocate that conceptual design and function anslysis be conducted

together
• To address completely the translation of conceptual design in ER model in

the three popular data models- relational, network, hierarhical, and vice
versa

• To illustrate the concepts via realistic large case study
• To provide a survey of state of art of design tools
• To provide enough support for students in terms of exercises and

bibliographic notes

Conceptual DB Design

1. Introduction to database design

2. Data modeling concepts

3.Metodologies for conceptual
design

4.View design 5.View integration

6 Improving the Quality of Data base
Schema

7.Schema Documentation
and Maintenance

Conceptual
Database Design

Functional Analysis for DB Design

8 Functional
Analysis

9 Joint Data and
Functional Analysis

10. Case Study

Conceptual Data
Design

Functional analysis
for
Data Design

Logical Design and Data Tools
•

11 High-Level Logical Design Using
ER model

12 Logical
Design for
Relational Model

13. Logical
Design for
Network Model

14. Logical
Design for
hierarchical
Model

15. DB Design Tools

DB design in the Information Systems Life Cycle

•
Feasibility
study

Requirements
collection and
Analysis

Design

Prototyping Implementation

Validation and
testing

Operation

Phases of DB Design

•
Data requirements

Conceptual Design

Conceptual schema

Logical Design

Logical schema

Physical Design Physical schema

Function driven approach to information
system design

•
Application requirements

Functional Analysis

Functional schemas

High level application Design

Application specifications

Application program design

Detailed program specifications

Dependence of DB design phases on the
class of DBMS

•
Dependence on DBMS Class Specific DBMS

Conceptual design No No

Logical design Yes No

Physical design Yes Yes

Joint data- and function- driven approach to
information systems design

•
Data and application requirements

Conceptual Design Functional Analysis

Conceptual schema Functional schemas

Bibliography

• 1. W.Davis System Analysis and Design : A structured Approach .
Addison-Wesley 1983

• 2. R.Farley Software engineering Concepts. VcGraw Hills 1985
• 3. A.Cardenas Data Base Management System. 2 ed. Allyn and Bacon 1985

• Data Modeling Concepts

Structure of the lecture

• Section 1- Abstractions
• Section 2- Properties of mapping
• Section 3- Data models, Schemas,

Instances of DB
• Section 4- ER Model
• Section 5- How to read an ER-schema

Abstractions in Conceptual Data Design

•

Classification Abstraction

•
Month

January February … December

T
a
b
l
e
• The Classification Abstraction is used for defining as

class of real world objects characterized by common
properties

• One level tree having as its root class
• A Node leaf is a member of root class
• {black chair, Black table, White chair, White table}

Table Chair Black
Furniture

White
Furniture

Black
Table

White
Table

Black
Chair

White
Chair

Aggregation Abstraction

• Aggregation abstraction defines a new class from set of (other) classes that
representits component parts

• Leaf IS PART OF root class (is A)

Bicycle

Wheel Pedal HendleBar

Generalization Abstraction
• A generalization abstraction defines a subset relationship between the

elements of two or more classes In generalization all the abstractions
defined for the generic class are inherited by all the subset classes

Person

Man Woman

Properties of Mapping
• A Binary aggregation is a mapping established between two classes.

Uses Owns

Person Building

Binary aggregation USES

•

P1
.

P2
.
P3
.

B1
.
B2
.
B3
.
B4
.

Binary aggregation OWNS

•

P1
.

P2
.
P3
.

B1
.
B2
.
B3
.
B4
.

Binary aggregation OWNS

P1
.
P2
.
P3
.

B1
.
B2
.
B3
.
B4
.

Minimal cardinality (min-card)

• Let us consider aggregation A between classes C1 and C2
The minimal cardinality or min-card of C1 in A denoted

min-card(C1,A), is the minimum number of mappings in which
every element of C1 can participate.

Similarly, the min-card of C2 in A, denoted min-card(C2,A), is the
minimum number of mappings in which each element of C2 can
participate

Maximal Cardinality

• Let us consider aggregation A between classes C1 and C2
The maximal cardinality or max-card of C1 in A denoted

max-card(C1,A), is the maximum number of mappings in which
every element of C1 can participate.

Similarly, the max-card of C2 in A, denoted max-card(C2,A), is the
maximum number of mappings in which each element of C2 can
participate

One –to-one mapping

• If max-card(C1,A)=1 and max-card(C2,A)=1 then we say that the
aggregation is ONE-TO-ONE

.

.

.

.

C1

.

.

.

.

.

C2

One to many mapping

• If max-card(C1,A)=n and max-card(C2,A)=1 then we say that the
aggregation is ONE-TO-MANY

.

.

.

.

C1

.

.

.

.

.
C2

Many –to –one mapping

• If max-card(C1,A)=1 and max-card(C2,A)=n then we say that the
aggregation is MANY-TO-ONE

.

.

.

.

C1

.

.

.

.

.

C2

Many –to-many mapping

• If max-card(C1,A)=m and max-card(C2,A)=n (m, n>1), then we
say that the aggregation is MANY-TO-MANY

.

.

.

.

C1

.

.

.

.

.

C2

N-ary aggregation
• An n-ary aggregation is a mapping established among three or

more classes
• Minimal Cardinality (min-card) Let us consider the aggregation A

between classes C1,C2,…,Cn The min-card of Ci in A is minimal
number of mappings in which each element of Ci can participate

• Maximal Cardinality (max-card) Let us consider the aggregation A
between classes C1,C2,…,Cn. The max-card of Ci in A is maximum
number of mappings, in which each element of Ci can participate

• The two values of minimal and maximal cardinality completly
characterize each participation of one class in aggregation

Representation of ternary aggregation Meets
•

CS47 .
EE01 .
.
.

. ter

. skil

.

.

.

.MON

. TUE

.WED

.THU

.FRI

Generalization
• A Generalization Abstraction establishes the mapping from

generic class to the subset class
Person

Male Female

Total, Exclusive

Partial, overlapping generalization

•

Person

Male

Partial,Overlapping

Empl
Unimpl

Person

Male

Partial,Overlapping

Empl
Unimpl

Partial, Exclusive Generalization
• Vehicle

Car

Partial,Exclusive

Bicycle

Total, overlapping generalization

•
Player

Soccer player

Total, Overlapping

Tennis player

Data models
• A Data model is a collection of concepts that can be used to

describe a set of data and operations to manipulate the data.

• When a data model describes a set of concepts from a given reality,
It is called a conceptual data model
The Concepts in data model are typically by using abstraction

mechanisms and are described through linguistic and graphic
representations . Syntax can be defined fnd a graphical notation can
be developed as parts of data model.

Conceptual model is tool for representing reality at high level of
abstraction

Logical models support data descriptions that can be processed
by computer. They include hierarchical, network, relational models

These models to phisical structure of database

Schema

• Schema is a representation of a specific portion of
reality, built using a particular data model

• Schema is static, time – invariant collection of linguistic
or graphic representations that describe the structure of
data of interest such as what within one organization

Person
NAME SEX ADDRESS SOCIAL SECURITY NUMBER

Car
PLATE MAKE COLOUR

SOCIAL SECURITY NUMBER PLATE

SAMPLE SCHEMA

Instances
• An instance of schema is a dynamic, time variant collection of data that

conforms to the structure of data defined by the schema
• Sample instance
• PERSON
• JOHN SMITHM 11WEST12.,FT.LAUDERDALE 387-6713-362
• MARY SMITHF 11WEST12.,FT.LAUDERDALE 389-4816-381
• JOHN DOLEM 11RAMONA ST. PAOLO ALTO 391-3873-132
• CAR
• CA13718 MASERATI WHITE
• FL18MIAI PORSCHE BLUE
• CA CATA17 DATSUN WHITE
• FL 171899 FORD RED
• OWNS
• 387-6713-362 FL 18MIAI
• 387-6713-362 FL171899
• 391-3873-132 CA13718
• 391-3873-132 CA CATA17
• Sample instance after insertion
• CAR
• CA13718 MASERATI WHITE
• FL18MIAI PORSCHE BLUE
• CA CATA17 DATSUN WHITE
• FL171899 FORD RED
• NY BABYBLUE FERRARI RED
• OWNS
• 387-6713-362 FL18MIAI
• 387-6713-362 FL171899
• 391-23873-132 CA13718
• 391-32873-132 CA CATA17
• 389-4816-381 NY BABYBLUE

Relationships between model, schema, instance

•
Model

Schema

Instance

Model provides
rules for
structuring data

Schema
provides rules
for verifying
that an instance
is valid

Perception of the
structure of reality

Description of reality
at a given point in
time

Qualities of Conceptual Models
• 1. Expressiveness
• 2. Simplicity
• 3. Minimality
• 4. Formality
• PROPERTIES OF GRAPHIC REPRESENTATIONS
• 1.Graphic Completeness
• 2. Ease of Reading

The Entity –Relationship Model
• Basic elements of the ER Model
• Entities. Entities represent classes of real world objects
• Relationships. Relationships aggregation of two or more entities
• Binary and n-ary relationships
• Rings – are binary relationships connecting an entity to itself
(recursive relationships)

 • Portion of ER-schema representing entities PERSON, CITY and
relationships IS BORN IN and LIVES IN

PERSON
CITY

LIVES

IS BORN IN

Instance for previous schema

• PERSON={p1,p2,p3}
• CITY= {c1,c2,c3}
• LIVES IN= { <p1,c1>,<p2,c3>,<p3,c3>}
• IS BORN IN= {<p1,c1>,<p3,c1>}

N-ary relationship MEETS
•

COURSE MEETS
CLASSROOM

DAY

COURSE MEETS
CLASSROOM

DAY

Relationship MEETS

•

COURSE MEETS
CLASSROOM

DAY

(1,3)
(0,40)

(0,n)

Relationship MANAGES

•

Employee Manages

Manager Of

SUBORDINATE OF

(0,n)

• min-card(PERSON,LIVES IN)=1
• max-card(PERSON,LIVES IN)=1
• min-card(CITY,LIVES IN)=0
• max-card(CITY,LIVES IN)=n

Relationship LIVES IN

•

PERSON
(1,1)

LIVES
IN

CITY

(0,n)

Ring relationship MANAGES

•

Employee Manages

Manager Of

SUBORDINATE OF

Attributes
• Attributes represent elementary properties of entities or relations

PERSON
CITY

LIVES IN

IS BORN IN

MOVING DATE

.NAME

. NAME

An ER schema with entities,relationships,attributs

•

NAME
SOCIAL
SECURITY
NUMBER
PROFESSION
(0,n) DEGREE

(0,n)

NAME
ELEVATION
NUMBER OF
INHABITANTS

BIRTH DATE

 LIVES IN

IS BORN IN CITY

(0, n)

MOVING DATE

PERSON

(0,1)

An example of instance of DB schema
PERSON={p1:<JOHN,345-8798-564,STUDENT,()>,
p2:<SUE,675-6756-343, MGR,(M.S.,Eng,Ph.D.)>
P3:<MARTIN,676-453-8482,FARMER,(HS)>}
CITY={c1:<ROME,100,3000000>,
c2:<NEW-YORK,0,9000000>,
c3:<ATLANTA,100,2000000>}
LIVES IN={<p1,c1:<1-02-80>>,
<p2,c3:<7-23-83>>
<p3,c3:<6-04-81>>}
IS BORN IN={<p1,c1:<1-05-55>>
<p3,c1:<6-14-35>>}

Schema PERSONNEL
• Schema : PERSONNEL
• Entity: PERSON
• Attributes: NAME: text (50)
• SOCIAL SECURITY NUMBER: text (12)
• PROFESSION: text (20)
• (0,n) DEGREE: text (20)
• Entity: CITY
• Attributes: NAME: text (30)
• ELEVATION: integer
• NUMBER OF INHABITANTS: integer
• Relationship:LIVES IN
• Connected entities: (0,n) CITY
• (1,1) PERSON
• Attributes: MOVING DATE: date

• Relationship: IS BORN IN
• Connected entities: (0,n) CITY
• (0,1) PERSON
• Attributes: BIRTH DATE: date

Generalization Hierarchies
• In the ER model it is possible to establish generalization hierarchies

between entities
• An entity E is generalization of a group of entities E1,E2,…,En if

each object of classes E1,E2,…,En is also object of class

E

E1 E2 En

COVERAGE:
• Total generalization (t)
• Partial generalization (p)
• Exclusive (e)
• Overlapping (o)
Pair: (t,e) the most frequently used

Generalization hierarchy for entity PERSON
•

(p,0)

PERSON

MALE FEMALE MANAGER SECRETARY EMPLOYEE

TECHNICAL
MANAGER

ADMIN.
MANAGER

PROGRA
MMER

SALES
EMPLOY

ADVERTISING
EMPLOYEE

(t,e) (p,e)

(p,0)

Inheritance
• All the properties of the generic entity are inherited by the subset

elements
PERSON NAME

ADDRESS

NAME
ADDRESS
DRAFT
STATUS

MALE FEMALE
NAME
ADDRESS
MAIDEN
NAME

Incorrect representation

P
E
R
S
O
N

•

PERSON

ADDRESS

NAME

DRAFT
STATUS

MALE FEMALE

Correct representation

MAIDEN
NAME

Formal definition of Inheritance
• Let E be an entity. Let A1, A2,…,An be single valued, mandatory attributes

of E. Let E1, E2,…,En be other entities connected to E by mandatory, one
–to-one or many-to-one binary relationships R1,R2,…,Rn (i.e.

• min-card(E,Ri)=1)) Consider as a possible identifier the set I=
{A1,…,An,E1,…,Em}, 0 ≤n, 0 ≤m, 1 ≤n+m

• The value of the identifier for a particular entity instance is defined as the
collection of all values of attributes A1,..,An and all instances of entities Ej,

• j=1,…,m connected to e with i ≤n, j <m
• Because of the assumption of considering mandatory single- valued

attributes or mandatory relationships with max-card set to each instance of
E is mapped either to one value of attributes Ai or to one instance of entity
Ej, i ≤n, j ≤m

Exammpe of schema transformation
•

• Each schema TRANSFORMATION has a starting schema and a
resulting schema

• Each SCHEMA TRANSFORMATION maps names of concepts in
starting schema to names of concepts in resulting schema.

• Concepts in the resulting schema must inherit all logical connections
in the starting schema

Properties of top –down primitives

• They have a simple structure: the starting schema is a single
concept, the resulting schema consists of small set of concepts.

• All names are refined into new names describing the original
concept in the lower abstraction level

• Logical connections should be inherited by the single concept of the
resulting schema

Top –Down Primitives
•

Application of top-down primitives

•

Applying of complex top –down schema
transformation

•

Bottom-up primitives
•

•

•

•

• Strategies for Schema Design

Top-down strategy

•

• In the top-down strategy schema is
obtained applying pure top-down
refinement primitives

•

Bottom-Up strategy
• In the bottom –up strategy we apply pure bottom –up primitives

•

•

Inside-out strategy
• This strategy is a special type of bottom –up strategy
Here we fix the most important or evident concepts and then proceed

by moving as oil stain does finding first the concepts that are
conceptually close to starting concepts and then navigate to more
distant ones

•

Mixed strategy

•

•

Criteria for Choosing among Concepts
•

Entity vs. Simple attribute

Generalization vs. attribute
• Generalization will be used when we

expect that some property will be
associated to the lower level

Composite attribute vs set of simple
attributes

Inputs, outputs and activities of conceptual
design

•

•

•

Outputs
•

Activities
•

