View
Integration

* View integration is the process of merging
several conceptual schemas into a global
conceptual schema that represents all the
requirements of the application.

* The main goal of view integration is to find
all parts of the input conceptual schemas

that refer to the same portion of reality and
to unify their representation.

This activity is called schema integration; it
IS very complex, since the same portion of
reality is usually modelled in different ways
In each schema.

U

thtegration is also required in another context, called
database integration, which

ihvolves merging several different databases into a single
3atabase; in this case, we must first construct a conceptual
Fchema of each individual database and then integrate
those schemas. This activity is required for large
thformation systems consisting of several databases;

A special application of database integratron occurs its
distributed database systems, in which individual databases
are stored on different computers in a computer network.
Users of these systems should be provided with a unified
View of the database that is transparent to data distribution
and allocation. Besides encountering technological
problems, designers of these systems may have to integrate
?}Xisting databases,

* First of all we examine problems and
Issues that influence the integration
activity.

* In the next Section we deal with
integration in the large, that is, with how to
organize the integration of several
schemas.

* Subsequent sections deal with integration
In the smallL, that is, between two input
schemas.

» We deal with conflict analysis and
resolution, and with the merging of views.

Issues In View Integration

* The main difficulty of view integration is
discovering the differences in the schemas to
be merged. Differences in modeling are due
to the following causes:

» Different Perspectives.
» Equivalence among Constructs in the Model.
* Incompatibe Design Specifications

Different Perspectives

Different Perspectives. In the design process, cesigners model the same object
ftom their own point of view. Concepts may be seen at iferent levels of abstaction, or

™

epresented using iferent propertes. An example s given in Figure 5.1: the telionship

between ENPLOYEE and PROTCT is perceived as one reltionship in one schema and a the
combination of two relationships in the other schema

EMPLOYEE | ENMIPLOYEE

PROJECT | DEPARTMENT

<>

PROJECT

5.1.a. Different perspectives

Equivalence among Constructs in
the Model.

Equivalence among Constructs in the Model. - Conceptual models have a rich variety
of representation structures; therefore, they allow for different equivalent representations
of the same reality. For instance, in Figure 5.1b the association between book and
publisher is represented by a relationship between the entities Book and PUBLISHER in one
schema and as an attribute of the Book entity in the other schema. Similarly, in Figure 5.1¢
the partitioning of persons into males and females is represented by a generaliation
hierarchy among the entities PERSON, MAN, and WOMAN in one schema and by the attribute
SEX of the entity PERSON in the other schema

‘ BOOK

—0 TITLE

PUBLISHER

0 NAME

(b) Equivalent constructs

BOOK

{3 TITLE

—O PUBLISHER

—O NAME oenean O NAME
PERSON» PERSON 5 SEX

MAN WOMAN

(¢) Equivalent constructs

Incompatibe Design Specifications

* Errors during view design regarding names,

» structures, and integrity,constraits may produce
erroneous inputs for the integration activity. During
iIntegration, these errors should be selected, and
corrected. For example, in Figure 1d the first
schema indicates that each employee is always
assigned to a unique project, but the second
schema indicates that each employee works in
multiplle projects.

Both schemas look correct, one of them is wrong.

EMPLOYEE EMPLOYEE

(15:1) (1, n)

(1, n) (1, n)

PROJECT PROJECT

(d) Incorrect specification

View Integration in Large

e dtabase desgn projcts, it s qitecommon t proclcetens or v hundreds o
Afeent schemas that must b inegnaed. This processrequires estalishing a disciplin
orselecinganappropiatesequence o inividul inteations o views. The ot gener
amproach to the integrron procs is shown in Figure 3.3 thi apptcach poceeds wit
the intemation of severa chemas at @ time, and therefore involves several ocisting
oartially integrated schemas

5.2 Approach to vie

Schema 1 Schema 2

N 7

Conflict
analysis

v

Schama 1
Schema 2
List of conflicts

Y

Conflict
resolution

!

Schema 1
Schema 2
Interschema properties

\

Schema
merging

{

Integrated schema

o T g i | s [l e | R |

\&// NS
NS %

Intermediate design steps

———

NS N~ NS

\ l /

The integration of many schemas at the same time is not very convenient, because
it is quite difficult to discover conflicts. We suggest instead that only one pair of schemas
be considered at a time; further, we suggest that the results of schema integration be
accumulated into a single schema, which evolves gradually towards the global conceptual
schema. This approach to view integration is shown in Figure 5.4: one schema is progres-

sively enlarged to include new concepts from other schemas.
We must first choose the order of schema comparisons. If the integration process is

performed according to a mixed (top-down and bottom-up) design strategy, as described
in Section 3.2.4, then the skeleton schema should be chosen as the input to the first inte-
gration process. Schemas should be progressively agaregated with the skeleton schema,
which performs a pivotal function. The order in which the other schemas are considered
is not particularly relevant. If no skeleton schema is available, the designer should estab-
lish a priority among schemas, based on their importance, completeness, and reliability.

-1 '

Schema 1 Schema 2

N S

Partial
integrated Schema 3
schema

N

Scheman

N/

Global
schema

Figure 5.4 The suggested sequence of view-integration activities

Conflict Analysis and Resolution

We now concentrate on the integration process i the smal, that is, between a pair of
schemas, using an example that deals with the management of a library. The input
schemas are shown in Figure 3.5, The scientist schema (Schema 1) describes the structure
of the private library of 2 researcher. The librarian schema (Schema 2) describes the
structure of the central library of a department. Tables 3.1 and 5.2 describe concepts of
Schemas 1 and 2 whose meanings are not obvious.

Conflict analysis aims at detecting all the differences in representing the same reality
in the two schemas. Two main tasks may be distinguished: (1) name conflict analysls, in
which names of concepts in the schemas are compared and unified; and (2) structural
conflict analysis, in which representations of concepts in the schemas are compared and
unified.

Name Conflict Analysis

There are two sources of name conflicts: synonyms and homonyms. Synonyms occur when
the same objects of the application domain are represented with different names in the
two schemas; homonyms occur when different objects of the application domain are
represented with the same name in the two schemas. In discovering synonyms and
homonyms, the designer is guided by a similarity or a mismatch among concepts, which
may suggest the presence of a naming conflict. Concept similarity arises when concepts
with different names have several common properties and constraints in the schemas.
Similarity of two concepts indicates that they may be synonyms. Concept mismatch arises
when concepts with the same name have different properties and constraints in the
schemas. Mismatch of two concepts indicates that they may be homonyms.

The terms properties and constraines in these definitions are defined asfollows. Properties
of a concept are all other neighbor concepts in the schema. For instance, the properties of
a given entity are all its attributes, as well as the relationships, subsets, and generalizations
in which it participates. Constraints are rules or conditions that limit the set of valid
instances of the schema. These include, for instance, cardinality constraints for relationships
and generalizations. Table 5.3 shows neighbor properties and constraints for entities,
relationships, and attributes.

As a consequence of detecting similar and mismatched concepts, several possible
modifications can be petformed on the schemas. We call the set of all such possible
modifications modification scenarios. The modification scenarios for the naming conflict
involve renaming the concept; they can also involve adding some interschema property. Let
us explain both of these ideas.

Concept Renaming

The terms properties and constraints in these definitions are defined as follows. Properties
of a concept are all other neighbor concepts in the schema. For instance, the properties of
a given entity are all its attributes, as well as the relationships, subsets, and generalizations
in which it participates. Constraints are rules or conditions that limit the set of valid
instances of the schema. These include, for instance, cardinality constraints for relationships
and generalizations. Table 5.3 shows neighbor properties and constraints for entities,
relationships, and attributes.

As a consequence of detecting similar and mismatched concepts, several possible
modifications can be performed on the schemas. We call the set of all such possible
modifications modification scenarios. The modification scenarios for the naming conflict
involve renaming the concept; they can also involve adding some interschema property. Let
us explain both of these ideas.

Concept renaming is perormed (i.., 2 concept is renamed) whenever we detect a

synonym or a homonym. Synonyms should be ¢

iminated to temove ambiguity, For

example, when two concepts such 2 CUSTOMER and

CLIENT are synonyms, then we select

one ofthem, $ay CUSTOMER, and rename CLENT s CLSTOMER. For the case of a homonym,
sUppose that REGISTRATION in one view refers to the process of registering a car renter,
wnereas in another view it means making a reservation for the car. In this case, the
congept in the second view should be renamed as RESERVATION

lNAME

ME_HBNITLMLol

DELUNGS_
TO

EQUESTED.
OF

AUTHOR

(1’ n)

<>

(1,n)

nLecAnum_

(1,m| GROUP

O ADDRESS

LAST_NAME
—O ADDRESS

——O ADDRESS

PUBLISHING_ [® NAME

company L)

PUBLICATION

@ TITLE

—O YEAR

©, n) (1, n)

PUBL_OF_
INTEREST
‘ @ BOOK
(1, n)

(0. n)

SCIENTIST

—O AGE

(a) Scientist schema (Schema 1)

—O KEYWORD (1, n)

OF

(1, 1)

NAME
SERIES |—OEDITOS

(1| n)

BELONGS_
TO

(1, 1)

—& NUMBER
—OTITLE

LAST_NAME

—O STATE_OF_BIRTH

L—OVYEAR

@ TOPIC_CODE
TOPIC | —ONAME

—O AUTHOR
(1, n)
—e@TITLE

‘ S e LAS
* SCIENTIST |—0POS
am| b O DEG

oM
(0, n)
PUBLICATION T BORROWER
A lcl)STACK DAY _OF LOAN
TITLE

JOURNAL

PROCEEDINGS BOOK

PUBLISHED
(4, 1727 o,

(@, n)

1 schema (Schema 2)

| PR - RN | [AP ORE

([."AUTHOR (1. n)

Table 5.1 Concepts in Schema I (Scientist Schema)

e SR L SRS

Name Description

Author Authors of publicarions of interest to scientists

Publication ~ Publications kept by scientists in their private cabinets; they are usually
directly obtained by scientists from authors

Topic Research areas of interest to authors

Requested of ~ Connects papers that have been requested by some scientist to the author
of whom the request has been made

Sent by Connects papers that have been sent by authors to scientists who have
requested them

Interschema properties

Interschema properties express mutual constraints between concepts appearing in
different schemas. For example the entity PHD.CANDIDATE in one view may be constrained
to be a subset of the entity STUDENT in another view. These properties should be annotated
as extensions of the two schemas; they are later used in merging the schemas.

Figure 5.6 shows an example of possible modification for a naming conflict. Schema
| contains the entity CLERK; Schema 2 contains the entity MANAGER. In the first scenario,
the names are considered as synonyms, and the name in the second schema is changed. In
the second scenario, the names refer to different concepts, related by a subset. In the third
scenario, the names refer to different concepts that are related by a generalization hierarchy

with 4 third, more general concept. The subset and generalization hierarchy are examples
of interschema properties.

Figure 5.5:’

tity TOPIC appears in both schemas, although with different properties. In
L 1, TOPIC refers to an author’s interest, whereas in Schema 2 it refers to
nts of publications. This is an example of concept mismatch.

tity PUBLICATION refers in the first schema to an object that is requested of
t by authors; in the second schema, it refers to an object that is bought by
owed by) a scientist. This is also an example of concept mismatch.

ribute KEYWORD with the entity PUBLICATION in the first schema and the
OPIC in the relationship CONCERNS with PUBLICATION in the second schema
e same min- and max-cards. This is an example of concept similarity.

Concepts in Schema 2 (Librarian Schema)

——

Description

. Publicartions presently kept in the library
Papers published in journals or proceedings kept in the library
Topics of papets

[ndicates which scientist is responsible for the grant used to purchase the
e ko] |1 TR

® Table 5.3 Meighbor properries and cons rraints

Schema Element Meighbor Properties Constraints
Entiry Their attribures, adjacens relationships, Min-card, max-card in relarionships
subsers, and generalization hierarchies where the entity i a parricipane;
idenrifiers
Relationship Their attribures; parriciparing entities Min-card, max-card of the
participating enticies
Artributes Enriries or relationships to which they Min-card, max-card, value set,
belong identifiers that include the areribure

Hormonyms in Cases | and 2 are resolved by renaming Torc and pUsLicaTIon in the firs
schema to RESEARCH_AREA and PAPER respectively. Notice also that the relationship PR
OF-INTEREST in the first schema must then be renamed as PP o INTEREST, The synonyms
in Case 3 are avoided by renaming KEWORD 35 TOMC in the first schem.

Not all naming conflicts can be discovered by using concept similarity or mismatch.
For instance, consider the entity SCIENTIST, which in Schema | plays the role of getting and

MNaming Conflict

Soenaros

Sehemra 1

Sclama 2

CLERK

—O
CLERK_NO

MANAGER

CLERK

—{
CLERK_NO

CLERK

CLERK_NO

CLERK

!

MANAGER

=0 CLERK_NO

EMPLOYEE

T

CLERK

|
MAMAGER |

Figure 5.6 Examples of scenarios for modifying a naming conflict

Al /A AELLALS GALL AdlQiYRID I LRI IE WWRMH LT AY) WA GRLATL VA TIATERL TRT RN TRLAEEAE R AL LARE
n we assume that two concepts (attribute, entity, or relationship) with the sam
represent the same concept in the real world. During structural conflict analysi
ts with the same name in the input schemas are compared to see if they can b
1. We use the following categories:

Identical concepts, which have exactly the same representation structure an
neighbor properties.

- Compatible concepts, which have different representation structures or neighbc
properties that are not contradictory. For instance, the use of an entity and a
attribute to represent the same concepr (see Figure 5.1b) is an example of th
compatibility of concepts. Comparibility conflicts are easily solved by changir
one of the two representations.

. Incompatible concepts, which have properties that are contradictory. Sources «
incompatibility must be eliminated before merging the schemas. Some of th
possible incompatibilites in the ER model follow:

a. Different cardinalities for the same attribute or entity.

b. Different identifiers: an identifier in one schema is not an identifier in the othe
one.

] 1 | M » G e— o & 1 1 Pl = | & T . 4 4

Possible solutions to incompatibility include: selecting one representation over the other
or building a common representation such that all the constraints of the two schemas are
supported in the integrated schema.

Let us consider again our librarian and scientist schemas, and look for compatible and
incompatible concepts. Two compatible concepts are:

1. SciENTIST, which is an entity in both schemas, although it has different attributes
and relationships. [t represents the same object and needs no restructuring activity.

2. AUTHOR and TOPIC, which have different representation structures in the two
schemas. AUTHOR should be transformed into an entity in Schema 2, whereas TopiC
should be transformed into an entity in Schema 1. In both cases suitable relation-
ships are introduced.

Two cases of concept incompatibility arise. The first concerns the min-card of the
entity PUBLISHING_COMPANY in the PUBLISHED_BY relationship with Book: it is 0 in Schema 2,
but it is 1 (through the entity SERIES) in Schema 1. The former representation includes
publishing companies that have not published any of the books currently in the library,

while the latter case excludes these publising companies, We select the former alternative,
since it is less restricted.

The second incompatibility tefes to the AUTHOR concept. Schema 1 includes any
author (as an entity), as long as there is a scientist who is interested in any of his ot her
ublications. Schema 2 includes only authors (as attributes of PAPER) having at least one
vapet currently available in the library. Again, we select the former alternative, since it is
ess restrictive. The final products of conflict analysis are the two modified schemas of
Figure 3.7,

TO

OF_INTEREST

(0, n)

(0,

BELONGS_
TO

n)

(0, n)

AUTHOR

—O ADDRESS

(1’ n)

(1.n)

S 0, n)
SENT_BY
e (©, n)

—OTITLE
—O YEAR

SCIENTIST

—O AGE

1=1gaa¥~

(1,n)

—@ LAST_NAME

RESEARCH_
GROUP

NAME

(1, n)
'——*<'III'>——— TOPIC

—® NAME

PUBLISHING._
COMPANY

—® NAME

—O ADDRESS

—O ADDRESS

<o)

BOOK_OF
-NNTEREST 7,

—OLAST_NAME

—O STATE_OF_BIRTH

(1, n)
(1, n)

BOOK

(1, 1)

~O YEAR
TITLE

—

SERIES

(Lo}l
NUMBER (
ELONGS

TO

—O TITLE

(1, n)

CONCERNS

(1, n)

PUBLICATION

LAST_NA
SCIENTIST EPOSITTOP

DEGREE

l CLSTACK

TITLE

(0, 1)

(0, n\—OCITY_OF.

DAY_OF_LOAN

> G m| YOURNAL |/PROCEEDINGS BOOK ; 1)PUBL£,HED_ p%%
- (0, n) (1. n | {0, n) l—I
NA
> AUTHOR “WRITES_
@, n) (0, n)™_BOOK
Srane

lc1.ny

{1.m]

TOPIC

TORIC_CODE
—0 MNAME :

T CLASSIFEATIDN
STACK

l] 1}

PUBLICATION

D CrhaY_OF_Loum

(1. 1)

f LF B

MNTEREST

—
PROCEEDINGS

JOURMAL

SERIES

| PUBLISHING_

COMPANY

l ADDRESS
MAsE

RESEARCH_|
AREA,

Figure 5.8 Global schema after merging

0, mh

(0, nl

0, oy

LAST_maree

SCENTIST

FOSITICN
DESREE

O AGE

CITY OF_BIRTH

(1, myic, n)ﬂ

AUTHOHR

STATE_
(0. n} OF_BIRTH

[40, ni

W nl
—i LAST FMAME
ADDREES

i

RESEARCH_

GROUP

Exersises

5.1. Create several examples of the following:

a. Equivalent representations allowed in the Entity-Relationship model for the same
real-wortd concept

b. Different perspectives for the same concepts in different schemas

c. Incompatible design specifications Wat result in different representations of the
same properties

5.2. Perform this experiment with one of 1,our classmates or colleagues. Identify an
application domain well known to both of you (e.g., the structure of the computer
center, the football team, a restaurant, etc.). Discuss the features of this application
domain together, but not very precisely. Then produce two conceptual models. Now
compare your schemas to see if they include the following:

a. Portions that haue been modeled in exactly the same way

b. Portions that have been modeled with equivalent constructs

c. Parts that are not common and the interschema properties existing between them
d. Synonyms and homonyms

e. Errors

Then merge the schemas, and indicate the following graphically:

f. The subschemas containing all the concepts that are present in both input schemas
g. The subschemas containing all the concepts that are present in only one schema
5.3. Integrate the two schemas in Figure 5.9, which represent sales in a company and the
structure of its departments and personnel, producing a single schema.

5.4. Integrate the three schenras in Figure 5.10, which represent special tours, daily
travels, and reservations for daily travels, producing a single schema.

5.5. When a global schema has been produced as a result of an integration activity, it is
useful to remember the relationships between ER constructs in the input schemas and
ER constructs in the global schemas. Define a language that allows expressing such
mapping.

5,6. The methodology discussed here produces a unique representation as a

result of the integratioll process. Define a methodology that allows preserving several
different user views of the same reality, relaxing the rules for merging concepts.

CEPASTRERT

ST
TR

CERAATRIENT

FOERT A

1n.m

i1.m)

START
0.

{1, 1}

- —ille Pl RAS
CITY — POPLIL ST
STATE

(1, 1k

(a) Frst schama

- TRAVEL #
SPECIAL —) PRICE
TOUA — DATE

) 0 REQUESTIMNG_ORG.

<>

{1. m)

— BUS &
BLS —O NUMBER_OF_SEATS
—O MANUFACTURER

TRAVEL #

DAILY_ —{) LEAVES_FROM_CITY
TRAVEL =0 STOPS_AT_CITY {1,n)
i1, n EMDG_AT_CITY
=0 DAY
DATE MORITH
: YEAR
{0, n) i LAST_MAME
FASSENGER 0 ARRIVES N

—0 LEAVES_FROM

CHILD

(b) Second schama
Figure 5.10 Trip database

=0 AGE

STATE

—8 "ALE
=0 FOPULATION

i1.m

T WISITED
BY

(1.m

TRP & #— EAILY
PRICE ©&— TRIP

WITH

1, n}

(1, n

CRIVER

DATE

D&y
MIEIRTH

YEAR

(e) Third schema

Figure 5.10 {cont'd) Trip darabase

* Improving qualities of database

schema

Qualities of Database Schema

e Completeness. A schema is cplete when it represents all relevant features of the
application domain. Completeness can be checked in principle by
(1) looking in detail at all requirements of the application domain and checking
to see that each of them is represented somewhere in the schema (in this case
we say that schema is complete with recpect of requirements); and
(2) checking the schema to see that each concept is mentioned
in the requirements (in this case we say that requirements are complay with
respect to the schema).
Completeness can be checked more effectively by comparing the data schema
against the function schema.

 Correctness. A schema is correct when it properly uses
the concepts of the ER model.

We may distinguish two types of correctness, syntactic and
semantic.

A schema is syntactically correct when concepts are
properly defined in the schema;

for example, subsets and generalizations are defined
among entities but not among relationships.

A scherna is

« semantically correct when concepts (entities,
relationships, etc.) are used according to their definitions.
For example, it is a semantic mistake to use an attribute
to represent products in a manufacturing company
database when we need to represent several properties
of products (e.g., product-code, price, parts, etc.),
because an attribute is an elementary property.

« The following is a list of the most frequent semantic
mistakes:

1. Using an attribute instead of an entity
2. Forgetting a generalization (or a subset)
3. Forgetting the inheritance property of generalizations

4. Using a relationship with a wrong number of entities (e.g., a binary relationship
instead of a ternary relationship)

5. Using an entity instead of a relationship
6. Forgetting some identifier of an entity, especially external composite identifiers

7. Missing some min- or max-card specification

Minimality. A schema is minimal when every aspect of the requirements appears
only once in the schema. We can also say that a schema is minimal if no concept can be
deleted from the schema without losing some information. The schema in Figure 6.1
represents employees and projects on which they work. One of the attributes of the entity
PROJECT is NUMBER_OF_EMPLOYEES, which can be derived from the schema simply by count-
ing the employees related to the project. Therefore the schema is not minimal, and the
attribute NUMBER_OF_EMPLOYEES can be deleted without changing the information content
of the schema. Note that sometimes we prefer to allow some redundancy in the schema;

however, redundancy should be documented. This is typically achieved by adding to the
conceptual schema a rable indicating how derived data are computed from the other data.

——@ MNANME ——&@ MNAME
EMPLOYEE —0O AGE EMPLOYEE —O AGE

(1,)

—_— e
(1. m
—e CODE ' i d @ CODE
PRCJECT —0 MAMNAGER PROJECT — MAMNAGER
—O NUMBER_OF_
EMPLOYEES

Figure 6.1 A redundant schema

Expressiveness. A schema is expressive when it represents requirements in a
natural way and can be easily understood through the meaning of £ schema constructs,
without the need for further explanation. As an example of expressiveness, consider the
schema in Figure 6.2, which describes teaching and grading of courses and seminars.
Expressiveness is improved by introducing the new entities TEACHING STAFF (a generali
zation of the entities PROFESSOR and INSTRUCTOR) and OFFERINGS (generalization of entities
COURSE and sEMINAR) and relating them by the single relationship TEACHES.

b

PROFESSOR

SEMINAR
@-

INSTRUCTOR COURSE
TEACHES
TEACHING
ASSISTANT —@

&

TEACHING_ |
STAFF OFFERINGS

PROFESSOR INSTRUCTOR COURSE SEMINAR

TEACHING_ |
ASSISTANT

Figure 6.2 |mprovement of expressiveness

Readability. This is a property of the disgram that graphically represents the
schema. A diagram has good readability when it respects certain aesthetic crieria thar
make the diagram graceful. The main criteria follow:

1. A diagram should be drawn in a grid, so that boxes representing entities and
diamonds representing relationships have about the same sise and connections run
hotizontally and vertically.

2. Symmetrical seructures should be emphasized.

3. The global number of crosings is minimized (frequent crossings decrease the
hanchvideh of perception of the reader).

4. The global number of bends along connections should be minimised.

5. In generalization hierarchies, the father entity should be placed above the child
entifies, and children should be symmetrically placed with respect to the father.
Similarly, in subset relatonships the parent entity should be placed above and the
subset entity below.

For a demonstration of readability, consider the schema in Figure 6.3 Readability is
improved in Figure 6.3b by dropping crosings and emphasizing symmetry.

&)

o)
Figure 6.3 Improvement of readabilicy

Self-explanation. A schema is self-explanatory when a large number of properties
can be represented wsing the conceprual model itself, without other formalisms (e.g.,
annotations in natural language). As an example of a schema thar is not self-explanatory,
ler us represent students and their Master's and Ph.D. advisors, Assume that every student
has ar mose one Masrer’s advisor and one Ph.D. advisor and that the same student can (ag
different rimes} be both a Master's and Ph.D. smdent. This constraine cannot be fully
represented in the schema of Figure 6.4a, because no concept in the model allows staring
that “if a STUDENT object belongs to two instamces of the Has_apviscn relarionship, then
the TYFE artnbute should mke two distinct values.™ 1f instead we use two distincr rela-
ricnships between studenes and professors (Figure 6.4b), then we may enforce the con-
seraing by defining suitable minimal and maximum cardinalities of the relarionships.
Expressivencss and self-explanaton are addressed in Secrion 6.3,

PROFESSOR

(a)

(1. 1 [) |

STUDEMNT
ADVISOR
PROFESSOR

‘0. n} o, n)

®©)

Figure 6.4 Example of sclf-explanatory relarionships

Extensibility. A schema is easily adapred to changing requirements when it can be
decomposed into pieces (modules, or views), so that changes are applied within each
plece. We will address exeensibility in Chapeet 7, where we define criterta for modularizacion
and top-down documentation of the schema and use such conceprs for schema maintenance.

Normality. The concept of normality here comes from the theory of notmalization
associated with the relational model. The normal forms (fiest, second, third, fourth, and 2
variation of third normal form called Bovee-Codd normal form) are intended to keep the
logical structure of the dara in a clean, “purified” normal form by alleviating the problems
of insertion, deletion, and updare anomalies, which cause unnecesary work because the
same changes must be applied to a number of data instances, as well as the problem of

nm‘.i:lnnml lm.n .:.'Ir :Im-n (15 i-]'m rliﬂ-nl L'.IIll".' n-i'.'r-ll-ﬂmr.lnl-i‘nml mivan ;eu:l".:. Fﬂl‘ £] Fu“ ErEl FrmiarLE 1?1-"-

