Key Exchange Solutions

• Diffie-Hellman Protocol

• Needham Schroeder Protocol

• X.509 Certification

Diffie-Hellman Key Exchange

- The Diffie-Hellman protocol allows 2 people to use random values and yet each generate the same symmetric key without transmitting the value of the key.
- The security of the protocol lies in the discrete log problem:

given *y*, *g* and *p* find *x* such that $y = g^x \mod p$ Alice and Bob need to agree on a key to use in a symmetric key cryptosystem. They choose a large prime number p and generator g.

Alice

- Generates random 1. number a,
- Computes $x=g^a \mod p$ 2.
- Sends x to Bob 3.
- 4.
- 5.

Bob

- 1. Generates random number b,
- 2. Computes $y=g^b \mod p$
- 3. Sends y to Alice
- Receives y from Bob 4. Receives x from Alice
- Computes $k=y^a \mod p$ 5. Computes $k=x^b \mod p$

Why Diffie-Hellman works

Alice has computed

Bob has computed

$k = y^a \mod p$	$k = x^b \mod p$
$= (g^b)^a \mod p$	$= (g^a)^b \mod p$
$= g^{ba} \mod p$	$= g^{ab} \mod p$
$= g^{ab} \mod p$	

So Alice and Bob both have the same value of k.

How secure is it?

We assume that cryptanalyst Charles knows the values of *p* and *g* and that he eavesdrops on the exchange between Alice and Bob so that he also knows x and y.

- However, unless Charles can solve a DLP, he is unable to find *a* or *b*.
- It is believed that it is just as hard to find *k* from *x* and *y* without finding *a* or *b*.

The Needham-Schroeder Protocol

- This is another protocol for exchanging keys between Alice and Bob.
- This time they use only symmetric key cryptography

But

They need a trusted third party (TTP) or Server (S).

- Alice and the server have a key K_{AS}
- Bob and the server have a key K_{BS}
- Alice and Bob want to establish a shared key K_{AB} so that Alice can send Bob a message.
- They communicate with each other and the server as follows:

- 1. Alice sends the server S the names of Alice and Bob to request that a session key be generated.
- 2. The server sends to Alice:
 - a) The name of Bob
 - b) A session key for Alice and Bob to share
 - c) The name of Alice and the session key both encrypted using K_{BS}
 - All 3 items above are encrypted using key K_{AS}

- 3. Alice uses key K_{AS} to decrypt the items sent to her in step 2. Alice now knows the session key K_{AB} .
- 4. Alice sends Bob the value of 2c) which is the name of Alice and the session key K_{AB} encrypted with K_{BS}
- 5. Bob decrypts the name of Alice and the session key using his key K_{BS} . Now Bob knows the session key K_{AB} which he uses to communicate with Alice.

Needham-Schroeder

1. $A \longrightarrow S: A,B$

2. S
$$\longrightarrow$$
 A: $e_{KAS}(B, K_{AB}, e_{KBS}(A, K_{AB}))$

Alice decrypts to get B, K_{AB} , $e_{KBS}(A, K_{AB})$ 3. A B: $e_{KBS}(A, K_{AB})$

Bob decrypts to get A, K_{AB}

Needham-Schroeder 2

1. A _____ S: A,B,N_A 2. S _____ A: $e_{KAS}(B,N_A, K_{AB}, e_{KBS}(A, K_{AB}))$ 3. A _____ B: $e_{KBS}(A, K_{AB})$ 4. B _____ A: $e_{KAB}(N_B)$ 5. A _____ B: $e_{KAB}(N_B - 1)$

Certificates

A certificate consists of a public key together with an identification of the key user. The certificate is issued by a trusted third party(TTP) called a

certification agency (CA)

The certification agency might be a government agency or financial institution.

The CA guarantees the link between the user and the public key by digitally signing a document which contains the user name, the public key, the name of the CA, the expiry date of the certificate and perhaps other information such as access rights.

X.509 Standard

- Bob generates a document containing his relevant information and presents himself with this document to the CA.
- The CA confirm Bob's identity.
- The CA hash the document using SHA-1 and encrypt it using their own private key.
- This is the certificate.

- If Alice wants to communicate with Bob she looks up his public key document and certificate.
- She will use the public key of the CA to decrypt the certificate.
- She will hash the document using SHA-1
- If these two items are the same then she knows that she can safely communicate with Bob using the public key since the CA has verified his identity.