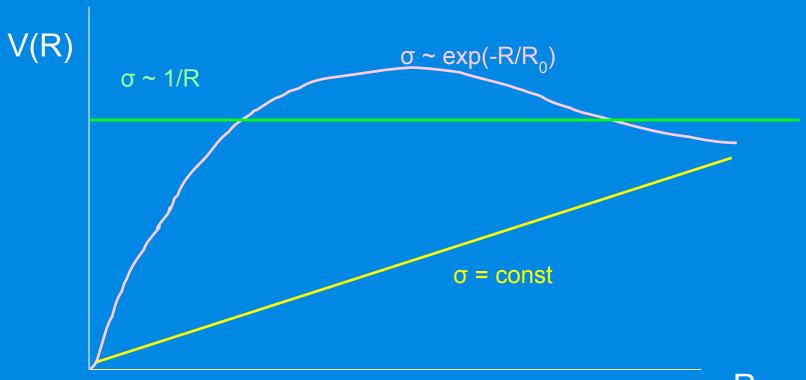
МАССЫ ГАЛАКТИК

Интервал масс: 10⁷– 10¹² Мс Методы оценки масс Прямой:


- анализ кинематики газа (кривая вращения, дисперсия скоростей)
- □ ширина линии HI + фотометрический размер галактики
- □ анализ кинематики звезд
- анализ условий возникновения структур в диске (балдж, спиральные ветви)

Косвенный (только для барионной массы):

по излучению звезд (светимость+цвет или спектр) и газа

ПРОБЛЕМА СКРЫТОЙ ИЛИ ТЕМНОЙ МАССЫ ВОЗНИКЛА ИЗ-ЗА СИЛЬНОГО РАССОГЛАСОВАНИЯ ПРЯМЫХ И КОСВЕННЫХ ОЦЕНОК МАССЫ ГАЛАКТИК (и их систем)

Кривая вращения для тонкого диска:

Два (исторически) главных аргумента в пользу существования **DM** в дисковых галактиках:

- •Форма кривой вращения сильно отличается от ожидаемой в предположении постоянства отношения M/L вдоль радиуса диска
- •Отношение массы к светимости M/L оказывается существенно выше, чем можно ожидать для нормального звездного населения, если М оценивать по динамике галактического диска

Высокие М/L_в в пределах оптического диска

Рекордсмены

UGC 3303, dIrr, $M/L_B = 31$, Караченцев и др. 2004

UGC 128, Irr, $M/L_{B} = 34$, Zavala et al. 2003

UGC 7170, Scd (?), M/L_B = 43, Cox et al, 1996

Из моделей звездного населения с различным содержанием молодых и старых звезд ожидаемые оценки составляют:

M/L~ 1 – преобладает свет молодых звезд M/L ~ 10 – только старые звезды

Насколько надежна фотометрическая оценка массы звездного населения?

ПРОБЛЕМА оценки массы звездного населения по данным фотометрии (яркость + цвет)

1. Оценка чувствительна к функции масс звезд и, прежде всего, к нижнему пределу масс, ни в одном случае хорошо не известном.

Ограничение по точности: в лучшем случае фактор 2

$$M_{STAR} = \int \psi(M) dM$$

$$M_{LOW}$$

2. Оценка массы модельно зависима: различные принятые эволюционные треки звезд, металличность звезд, различная история звездообразования приводят к различным отношениям **M/L**.

ПРОБЛЕМА оценки массы по измерениям скоростей вращения диска

- Неопределенность самого понятия «масса галактики»
- □ Не-круговые движения
- Необходимость оценки параметров ориентации диска (для учета эффектов проекции)
- Зависимости результата от характера распределения плотности в галактике

МАССА ТЕМНОГО ВЕЩЕСТВА =
 ДИНАМИЧЕСКИ ОПРЕДЕЛЕННАЯ
 МАССА – МАССА ЗВЕЗДНОГО
 НАСЕЛЕНИЯ – МАССА ГАЗА.

Чтобы понять, где находится темная масса — в диске или гало — требуется оценка массы отдельных компонент галактики.

ПРЕИМУЩЕСТВА, КОТОРЫЕ ДАЕТ ОЦЕНКА СКОРОСТЕЙ СТАРОГО ЗВЕЗДНОГО НАСЕЛЕНИЯ ДИСКА

- □ Сводятся к минимуму влияние некруговых скоростей, связанных, например, с локальными областями звездообразования, спиральными ветвями, поглощением карликовых спутников, внешним воздействием на галактику.
- В совокупности с оценкой дисперсии скоростей позволяет для оценки массы диска ввести условие его гравитационной устойчивости

Гипотеза об устойчивости:

Звездный (звездно-газовый) диск должен быть устойчив к гравитационным возмущениям в плоскости диска и к изгибным возмущениям в перпендикулярном направлении.

Ограничение на дисперсию скоростей первое требует определенного порогового бывчения прадиальной дисперсии скоростей

- Звезд, **зборож** дисперсии по z координате.
- $C_{r}/C_{r} \ge 0.4$

ИНФОРМАЦИФЯ О ДИСПЕРСИИ СКОРОСТЕЙ ЗВЕЗД – КЛЮЧ К ОЦЕНКЕ МАССЫ ДИСКА

Основные механизмы увеличения дисперсии скоростей звезд в дисках галактик:

Механизм	Примечание
Взаимодействие звезд с GMC	Почти изотропное рассеяние. Эффективность велика при большом количестве GMC.
Взаимодействие звезд со спиральными волнами плотности	Рост дисперсии преимущественно в плоскости диска. Эффективность не известна
Взаимодействие звезд с массивными объектами гало и аккреция мелких спутников	Рост дисперсии в основном в направлении, перпендикулярном плоскости диска. Эффективность не известна.
Взаимодействие с соседними галактиками, слияние	Эффективность сильно зависит от окружения.
Гравитационная и изгибная неустойчивости	Пропорциональный рост дисперсии в плоскости диска и перпендикулярно к ней. Прекращается через несколько периодов вращения диска.

Дисперсия скоростей звезд диска + кривая вращения (исправленная за асимметричный дрейф) дает возможность оценить:

- -- локальную плотность диска: $\sigma(r) = 1/Q \cdot C_r \cdot \kappa/3.36G$, где С, – дисперсия скоростей, к-эпициклическая частота
 - -- полную массу экспоненциального диска
- L радиальная шкала диска

ЧИСЛЕННЫЕ 3D-МОДЕЛИ

- □ Диск: N = 20·10³ 100·10³, газ не учтен
- □ Гало и балдж (не эволюционирующие)
- Радиальные шкалы и относительная масса диска и балджа свободные параметры
- □ Начальная дисперсия скоростей на субкритическом уровне (Q= 0.8 – 1.1)
- Шварцшильдовское распределение по скоростям

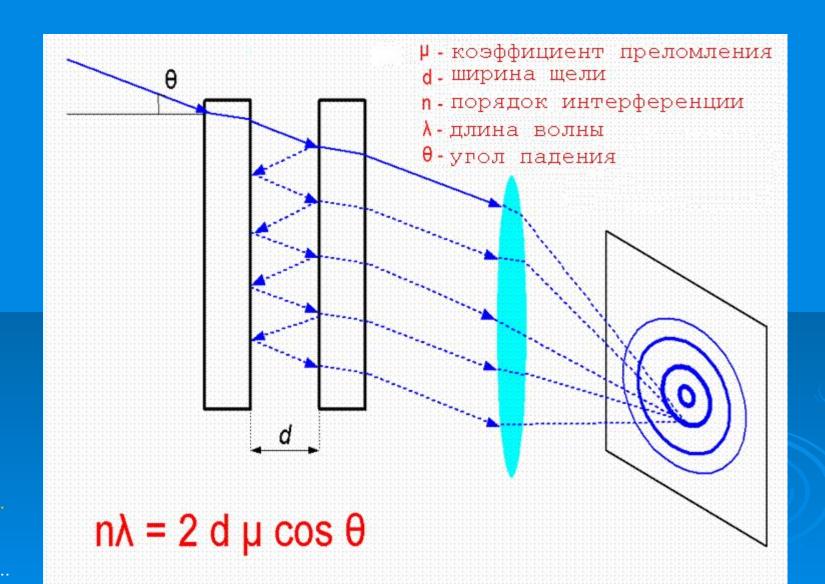
НАБЛЮДЕНИЯ:

BTA, 6m reflector of Special Astrophysical Observatory, Russian Academy of Sciences

Device:

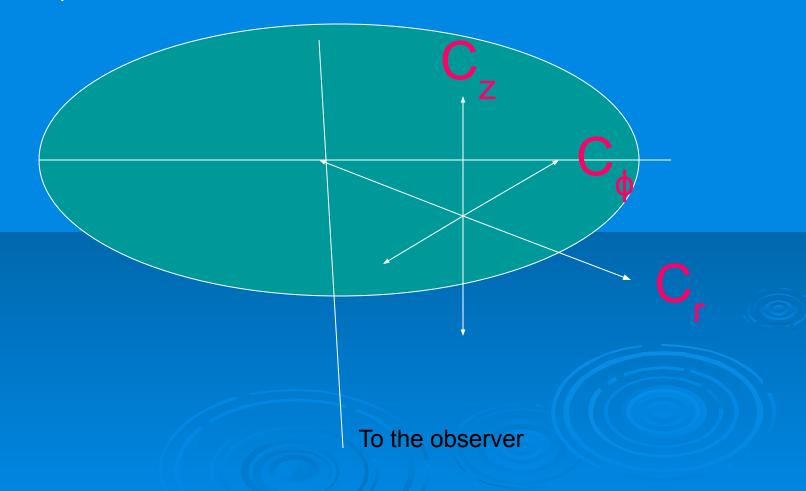
SCORPIO, long slit regime, CCD 2048x2048.

Template: G8-K4 stellar spectra, 4800-5540AA.


T_{exp} - 2 -2.5 hours

Data processing:

Cross-correlation method, adaptive (variable) binning.



3D- СПЕКТРОСКОПИЯ

Три компонента дисперсии скоростей: С_г, Сф, С_z.

 $C_{\text{obs}} = (C_z^2 \cos^2 i + C_{\phi}^2 \sin^2 i \cos^2 \alpha + C_r^2 \sin^2 i \sin^2 \alpha)^{1/2}$ $C_r/C_{\phi} = 2\Omega / \kappa \text{ (epicyclic approximation)}$

Galaxy	Mdisc (10 ⁹ M _o)	Method	Reference	Md/M _t for R=4L (extrapo lation)	Mdisc from BTF relationship (Pizagno+04)
Milky Way	44	N-body model Local marginal stability at R=Rsun	Khoperskov+03	0.33	66
M31	72	Dynamic model	Widrow+ 03, Geehan 05	0.25	85
M33	11 7	Marginal stability Rotation curve	Based on Hermann+ 05 estimates of PN Corbelli 07	0.7	6.1
LMC	4	N-body model Marginal stability	Khoperskov, Zasov	0.5	2.1
SMC	1.6-2.4	Dynamic model	Bekki,	0.16-0.2	1.3

Stanimirovich 08 4

ПРОБЛЕМА С ДИСКАМИ ГАЛАКТИК НИЗКОЙ ЯРКОСТИ (LSB- галактик)

Принято считать: темная масса доминирует почти от самого центра

 Для гигантских LSB это создает проблему объяснения часто встречающейся спиральной структуры, а иногда и баров.

MAXIMUM DISK AGAINST SUBMAXIMUM DISK: WHO WINS?

Let **be disc radial scalelength.**

Maximum disk:

The disk is as massive as it is allowed by the rotation curve;

the main mass within $R_{max} = 2.2$ is contributed by the stellar disk

Submaximum disk:

Dark halo gives significant input into the gravitational potential even at R = 2.2 ...

To connect the velocity dispersion with the local density of a disc, one may

 a) to assume that stability parameter Q_T is known (Zasov1985, Bottema1993),

or

 b) to assume that a vertical scalelength of a disc is known (Bottema, 1993, 1997)

or

c) to apply N-body models to galaxies where either disc flattness or velocity dispersion are known (Zasov, 1985, Zasov et al., 2002)

NUMERICAL 3D-MODELS of marginally stable discs

- TREEcode method
- □ Disc: $N = 2.10^5 10^6$, no gas
- A wide range of radial scalelengths and relative masses of three components (disc, bulge, quasi-isothermal halo
- Iterational step-by-step approximation to the threshold of stability

Assumptions:

- A disc is presented by a single component
- A quasistable state is reached for the time significantly shorter than the age of a disc.

NUMERICAL 3D-MODELS

- □ Disc: $N = 2.10^5 10^6$, no gas
- A wide range of radial scalelengths and relative masses of components
- Iterational step-by-step approximation to the threshold of stability

Assumptions:

- The disc reaches the state of a quasistable equilibrium for the time significantly shorter than its age.
- Optical brightness of a disc follows the mass distribution

Чтобы связать дисперсию скоростей звезд с плотностью диска, необходимо

либо

а) считать известным параметр устойчивости Q (Zasov1985, Bottema1993),

либо

b) считать известной толщину диска (Bottema, 1993, 1997)

либо

с) использовать численные (N-body) модели галактик, диски которых находятся вблизи порога устойчивости (Zasov, 1985, Zasov et al., 2002, Zasov et al 2005)

Analytical local criteria of threshold values of radial velocity dispersion C_r:

- Toomre' criterion
- $Q_T = 1$, $Q_T = Cr/(3.36\pi G\sigma/\kappa)$
- Modified Toomre' criterion
- $Q_T = 2\Omega/\kappa$
- Morozov' criterion
- $Q_T = (2\Omega/\kappa)(1+F_M (Cr, \Omega, \kappa, d\sigma/dr, dC_r/dr, d\Omega/dr))$
- Polyachenko-Polyacheko-Strel'nikov criterion
- $Q_T = F_P(dln\Omega/dlnr)$

АНАЛИТИЧЕСКИЕ локальные критерии устойчивости (пороговые значения радиальной дисперсии скоростей звезд **С**_.):

Let $Q = C_r/(C_r)_{TOOMRE}$ where $(C_r)_{TOOMRE} = 3.36\pi G\sigma/\kappa$ is the marginal radial dispersion for rigid rotating thin disk.

- "Classical" Toomre criterium
- $\mathbf{Q}_{\mathbf{T}} = \mathbf{1},$
- Modified Toomre' criterion
- $\mathbf{Q}_{\mathsf{T}} = \mathbf{2}\Omega/\kappa$
- Morozov' criterion
- $\mathbf{Q}_{\mathsf{T}} = (2\Omega/\kappa)(1+\mathbf{F}_{\mathsf{M}})(\mathbf{Cr}, \Omega, \kappa, d\sigma/d\mathbf{r}, dC_{\mathsf{r}}/d\mathbf{r}, d\Omega/d\mathbf{r})$
- Polyachenko-Polyacheko-Strel'nikov criterion

$$Q_T = F_P(dln\Omega/dlnr)$$

Let

- C_{obs} observed velocity dispersion (LOSVD)
- C_{min} line-of sight velocity dispersion, expected for marginally stable disc.

In general case, three alternatives are possible.

1. Cobs > Cmin

A disk is overheated by some processes such as merging or interactions

2. Cobs < Cmin

Either disc is unstable or its mass, and hence, Cmin, is overestimated.

3. Cobs ≈ Cmin

Quiet evolution, without major merging or strong gravitational perturbations

The example:

 NGC 4150 – So/a galaxy with a very small disc and practically no bulge

Disc scalelength ~ 0.7 kpc

Total mass of the disc is 5.3⁺²_{-1.5}*10⁹ M_{sun}

MODEL PARAMETERS

Galaxy	Mdisc 10 ¹⁰ Mo	M _{halo} /M _{disc+bulge} within R=2L	Z ₀ kpc	Z ₀ / R ₂₅
NGC 1167	39	0.51	2.8	0.12
NGC 2273	8.7	0.65	0.80	0.07
NGC 4150	0.53	0.56	0.78	0.17
NGC 6340	4.54	0.66	1.30	0.15