ВОЛНОВЫЕ СВОЙСТВА МИКРОЧАСТИЦ ВЕЩЕСТВА

Гипотеза де Бройля

Дифракция электронов

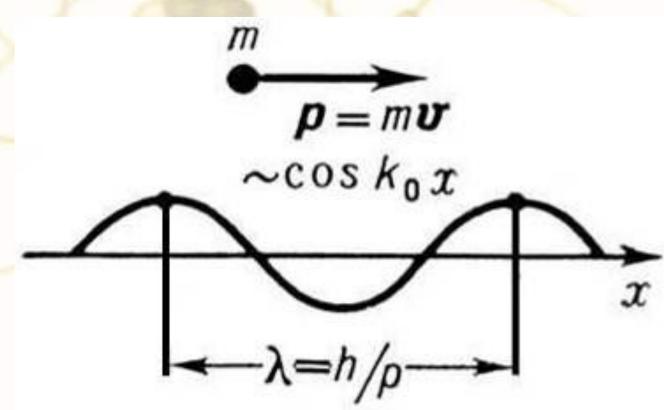
Корпускулярно-волновой дуализм микрочастиц вещества

Гипотеза де Бройля

В оптических явлениях наблюдается своеобразный дуализм.

Наряду с явлениями дифракции, интерференции (волновыми явлениями) наблюдаются и явления, характеризующие корпускулярную природу света (фотоэффект, эффект Комптона).

В 1924 г. Луи де Бройль выдвинул гипотезу, что дуализм не является особенностью только оптических явлений, а имеет универсальный характер. Частицы вещества также обладают волновыми свойствами.


Луи де Бройль (1892 – 1987), французский физик, удостоенный Нобелевской премии 1929 г. по физике за открытие волновой природы электрона. В 1923, распространив идею А. Эйнштейна о двойственной природе света на вещество, предположил, что поток материальных

должен обладать и волновыми свойствами, связанными с их массой и энергией (волны де Бройля). Экспериментальное подтверждение этой идеи было получено в 1927 в опытах по дифракции электронов в кристаллах, а позже она получила практическое применение при разработке магнитных линз электронного микроскопа. Концепцию де Бройля о корпускулярно-волновом дуализме использовал Э. Шредингер при создании волновой механики.

«В оптике, — писал де Бройль, — в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?»

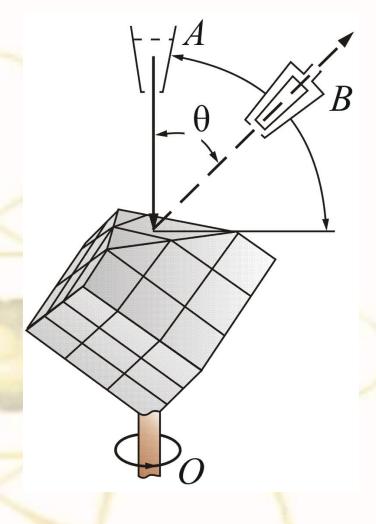
Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

Если фотон обладает энергией E = hv и импульсом $p = h/\lambda$, то и частица (например, электрон), движущаяся с некоторой скоростью, обладает волновыми свойствами, т.е. движение частицы можно рассматривать как движение волны.

Гипотеза де Бройля была революционной, даже для того революционного в науке времени. Однако, она вскоре была подтверждена многими экспериментами.

Дифракция частиц

Дифракция частиц - рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка частиц данного типа возникают дополнительно отклонённые пучки этих частиц.


Направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.

Опыты по дифракции частиц и их квантовомеханическая интерпретация.

Первым опытом по дифракции частиц, блестяще подтвердившим исходную идею квантовой механики – корпускулярно-волновой дуализм, явился опыт американских физиков К. Дэвиссона и Л. Джермера проведенный в 1927 по дифракции электронов на монокристаллах никеля. Эти опыты показали, что в определенных условиях электроны проявляют волновые свойства.

$$K = eU \rightarrow \lambda = \frac{h}{\sqrt{2m\hat{E}}} \rightarrow \lambda = \frac{12,26}{\sqrt{U}}$$

Здесь U выражено в B, а λ – в Å (1 Å = 10^{-10} м). При напряжениях U порядка 100 B, которые использовались в этих опытах, получаются так называемые «медленные» электроны с λ порядка 1 А. Эта величина близка к межатомным расстояниям d в кристаллах, которые составляют несколько \mathring{A} и менее, и соотношение $\lambda \leq d$, необходимое для возникновения дифракции, выполняется.

В опыте Дэвиссона и Джермера при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникали максимумы.

 $2d \sin \theta = n\lambda$

Волновые свойства частиц — электронов — были доказаны экспериментом.

Идея де Бройля о наличии у частиц вещества волновых свойств получила экспериментальное подтверждение, как для заряженных частиц (электронов), так и для нейтральных – нейтронов, атомов и молекул. Также было показано, что обнаружить волновые свойства макроскопических тел не представляется возможным из-за присущей им малой длины волны.

Физический смысл волн де Бройля

Как известно, интенсивность пропорциональна квадрату амплитуды. Эксперименты по отражению электронов и др. частиц от поверхности показывают, что по некоторым направлениям обнаруживаются максимумы числа отраженных частиц. Это означает, что в указанных направлениях отражается большее число частиц, чем в других направлениях. С волновой точки зрения наличие максимумов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волн, связанных отражающимися частицами.

Интенсивность дебройлевской волны оказывается большей там, где имеется большее число частиц. Другими словами, интенсивность волн де Бройля в данной области пространства определяет число частиц, попавших в эту область. В этом заключается статистическое, вероятностное толкование волн, связанных движущимися частицами.

Квадрат амплитуды дебройлевской волны в данной точке пространства является мерой вероятности того, что частица находится в этой области.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

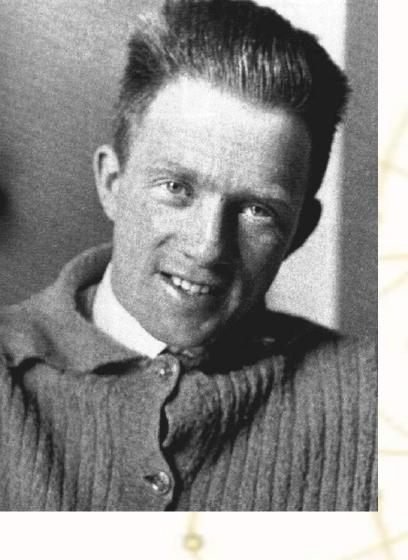
Соотношение неопределенности Гейзенберга

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат импульса, энергии и т.д. перечисленные величины называются динамическим переменными.

Микрообъекту не могут быть приписаны указанные динамические переменные.

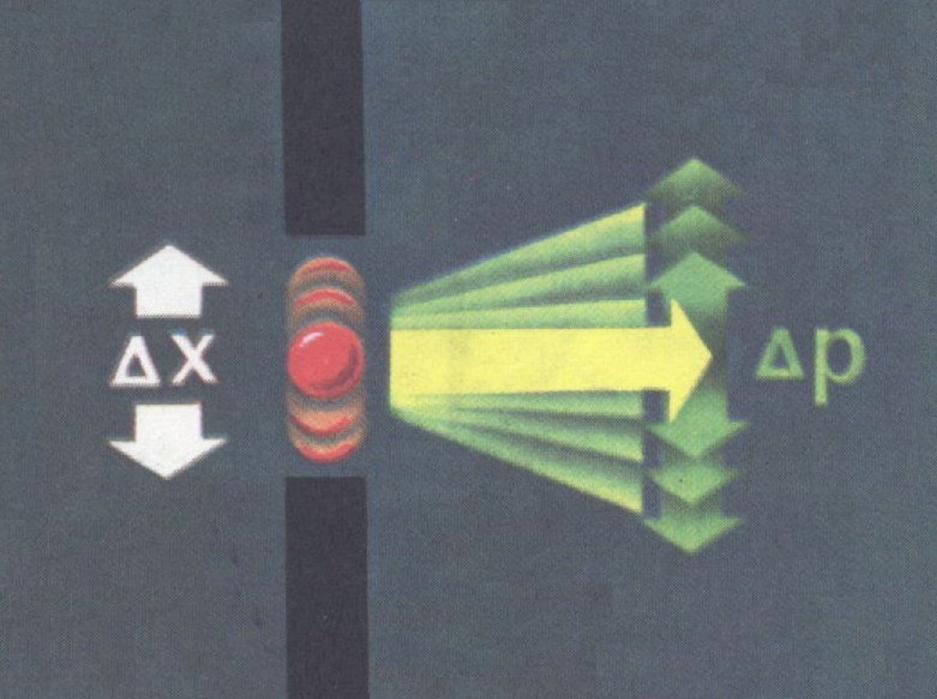
Корпускулярно-волновая двойственность свойств частиц, изучаемых в квантовой механике, приводит к тому, что оказывается невозможным одновременно характеризовать частицу ее положением в пространстве (координатами) и скоростью (или импульсом). Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты х и импульса р_х. Heonpedeленности значений <math>x и p_x удовлетворяют соотношению

 $\Delta x \Delta p_x \ge h$


h — постоянная Планка.

Аналогичное соотношение имеет место для y и p_y , для z и p_z , а также для других пар величин B классической механике такие пары называются канонически сопряженными:

$$\Delta A \Delta B \geq \emptyset$$


соотношение неопределенности Гейзенберга для величин А и В.

Это соотношение открыл в 1927 году Вернер Гейзенберг.

$$\Delta P \Delta X \ge \frac{h}{2\pi}$$

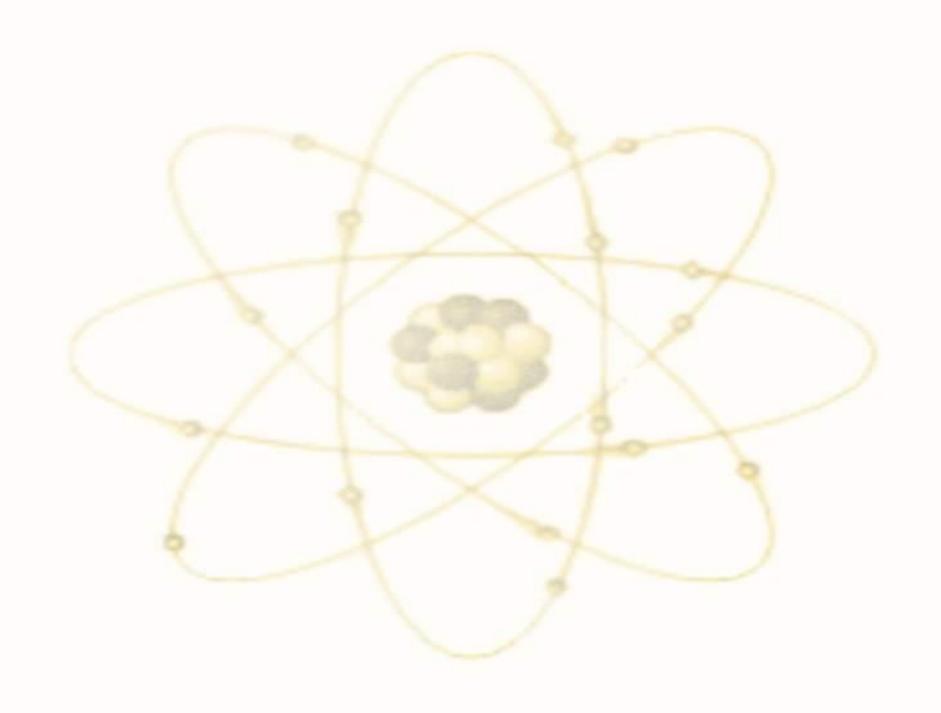
X

Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей

$$\Delta E \Delta t \geq h$$

это соотношение означает, что *определение* энергии с точностью ΔE должно занять интервал времени, равный, по меньшей мере

$$\Delta t \sim \frac{h}{\Delta E}$$


Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличии у нее волновых свойств.

Т.к. в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то

соотношение неопределенностей является квантовым ограничением применимости классической механике к микрообъектам.

Соотношение неопределенностей указывает, в какой мере возможно пользоваться понятиями классической механики применительно к микрочастицам,

в частности, с какой степенью точности можно говорить о траекториях микрочастиц.

Понятие о волновой функции

Экспериментальное подтверждение идеи де Бройля об корпускулярно-волнового дуализма, универсальности ограниченность применения классической механики микрообъектам, диктуемая соотношением неопределенностей, а также противоречия ряда экспериментов с применяемыми в начале XX века теориями привели к новому этапу развития квантовой физики созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.

Необходимость вероятностного подхода к описанию микрочастиц, является важнейшей отличительной особенностью квантовой теории.

Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону?

Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая $\Psi(x, y, z, t)$.

функцией (или Ψ — функцией).

Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

Эту величину называют также волновой

 $W \sim \left|\Psi(x,y,z,t)\right|^2,$ где $\left|\Psi\right|^2 = \Psi\Psi$, где Ψ — функция комплексно-

$$W \sim |\Psi(x,y,z,t)|^2$$

Таким образом, *описание микрообъекта с* помощью волновой функции имеет статистический, вероятностный характер:

квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени в области с координатами х и dx, у и dy, z и dz.

Итак, в квантовой механике состояние частицы описывается принципиально по-новому —

с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

Вероятность нахождения частицы в объеме V равна:

$$dW = |\Psi|^2 dV \tag{6}$$

Величина | \P^2 | = dW/dV (квадрат модуля \P - функции) имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единице объема в окрестности точки, имеющей x, y, z.

Таким образом, физический смысл имеет не сама Ψ – функция, а квадрат ее модуля $|\Psi^2|$, которым определяется интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме о сложении вероятностей, равна $W = \int |\Psi|^2 dV$

Т.к. $|\Psi|^2$ dv определяется как вероятность, то необходимо волновую функцию Ψ представить так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства.

Это означает, что при данном условии частица должна находиться где-то в пространстве.

Условия нормировки вероятностей: $\int_{-\infty}^{\infty} |\Psi|^2 dV = 1$,

Условия нормировки вероятностей:

(7)

$$\int_{-\infty}^{\infty} |\Psi|^2 dV = 1,$$

где данный интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x, y, z от $-\infty$ до ∞ .

Таким образом, условие нормировки говорит об объективном существовании частицы во времени и пространстве.

ACLOBRE HODIMIDOBKII BOLHOBOR (DAHKITIR).

$$\iint_{V} |\Psi|^2 dV = 1$$

Ну и что?

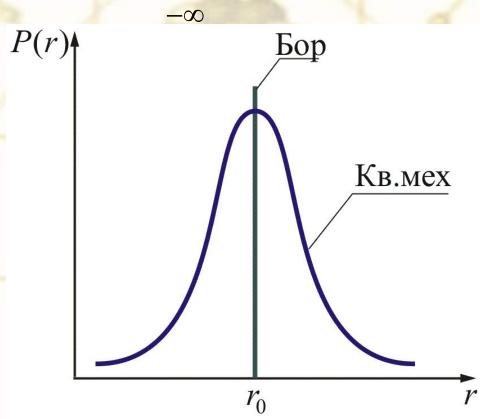
Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, *она должна удовлетворять ряду ограничительных условий*.

 Φ ункция Ψ , характеризующая вероятность обнаружить действия микрочастицы в элементе объема, должна быть:

- конечной (вероятность не может быть больше единицы);
- *однозначной* (вероятность не может быть неоднозначной величиной);
- непрерывной (вероятность не может меняться скачком).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями $\Psi_1, \Psi_2, \dots \Psi_n$, то она может находиться в состоянии, описываемом линейной комбинацией этих функций

$$\Psi = \sum_{n} C_{n} \Psi_{n}$$

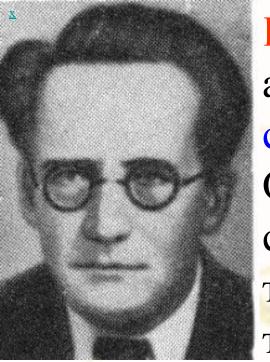

где C_n (n=1,2,3...) — произвольные, комплексные числа.

Сложение волновых функций (амплитуд вероятностей определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию классической статической теории, которой для независимых событий справедлива теорема сложения вероятностей.

характеристикой состояния микрообъектов.

Например, среднее расстояние < r > электрона от ядра вычисляется по формуле

$$\langle r \rangle = \int r |\Psi|^2 dV$$


Уравнение Шредингера

Толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающей движение микрочастиц в различных силовых полях, должено быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц.

Основное уравнение должно быть уравнением относительно волновой функции $\Psi(x, y, z, t)$, т.к. именно величина $|\Psi|^2$, осуществляет вероятность пребывания частицы в момент времени t в объеме $\mathrm{d}V$, т.е. в области с координатами x и $x+\mathrm{d}x$, y, и $y+\mathrm{d}y$, z и $z+\mathrm{d}z$.

Т.к. искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером.

Шредингер Эрвин (1887 — 1961) — австрийский физик-теоретик, один из создателей квантовой механики. Основные работы в области статистической физики, квантовой теории, квантовой механики, общей теории относительности, биофизики.

Разработал теорию движения микрочастиц — волновую механику, построил квантовую теорию возмущений — приближенный метод в квантовой механике. За создание волновой механики удостоен Нобелевской премии.

Уравнение Шредингера не выводится, а постулируется.

Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что в свою очередь, придает ему характер закона природы.

записывается так:

$$-\frac{\mathbb{Z}}{2m}\nabla^2\Psi + U(x,y,z,t)\Psi = i\mathbb{Z}\frac{\partial^2\Psi}{\partial t^2},$$

где
$$\mathbb{Z} = \frac{h}{2\pi}$$
, $m-$ масса частицы,

$$\nabla$$
 — оператор Лапласа $\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$, i^2 — мнимая единица,

U(x, y, z, t) — потенциальная энергия частицы в силовом поле, в котором она движется, Ψ – искомая волновая функция.

Если силовое поле, в котором движется частица потенциально, то функция *U не зависит явно от времени* и имеет смысл потенциальной энергии.

В этом случае решение уравнения Шредингера распадается на два сомножителя, один из которых зависит только от координаты, а другой — только от времени.

$$\Psi(x, y, z, t) = \Psi(x, y, z)e^{-i\frac{L}{\square}t}$$

Здесь E — полная энергия частицы, которая в случае стационарного поля остается постоянной.

Уравнение Шредингера для стационарных состояний

$$\nabla^2 \Psi + \frac{2m}{\mathbb{Z}^2} (E - U) \Psi = 0 \tag{10}$$

Здесь обозначено:

E - полная энергия электрона

U - потенциальная энергия

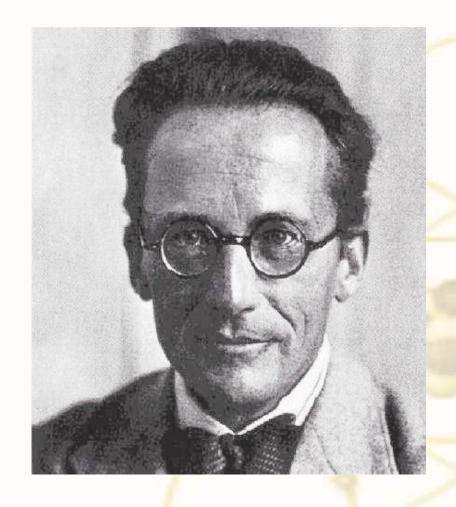
Ч-волновая функция электрона

$$\Psi = \Psi(x, y, z)$$

Уравнение Шредингера можно записать в виде

$$\hat{H}\Psi = E\Psi$$

В этом уравнении


 \hat{H} — оператор Гамильтона, равный сумме операторов $-\frac{\mathbb{N}}{2m}\nabla^2 + U = \hat{H}$

Гамильтониан является оператором энергии E.

X

В квантовой механике другим динамическим переменным сопоставляются *операторы*.

Соответственно рассматривают операторно координат, импульса, момента импульса и т.д.

Эрвин Шредингер (1887-1961)

Любое движение микрочастиц можно уподобить

уподобить движению

особых волн

