REGRESSION MODEL WITH TWO EXPLANATORY VARIABLES
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This sequence provides a geometrical interpretation
of a multiple regression model with two explanatory
variables.

Y — weekly salary ($)
X1 — length of employment (in months)

X2 — age (in years)
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Specifically, we will look at weekly salary function model where weekly salary, Y, depend on
length of employment X1, and age, X2.



Y — weekly salary ($)

X1 — length of employment (in months)

X2 — age (in years)
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The model has three dimensions, one each for Y, X7, and X2. The starting point for
investigating the determination of Y is the intercept, ﬂo.
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Y — weekly salary ($)
X1 — length of employment (in months)

X2 — age (in years)
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Literally the intercept gives weekly salary for those respondents who have no age (??) and
no length of employment (??). Hence a literal interpretation of ﬂo would be unwise.
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Y — weekly salary ($)
X1 — length of employment (in months)

X2 — age (in years)
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The next term on the right side of the equation gives the effect of X7. A one month of

employment increase in X7 causes weekly salary to increase by /)’1dollars, holding X2
constant.
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Similarly, the third term gives the effect of variations in X2. A one year of age increase in X2
causes weekly salary to increase by ﬂ2 dollars, holding X7 constant.



LB |

Y=ﬂ0+ﬂ1x1+ﬂ2XZ+ei

ﬂO +ﬂ1X1 +ﬂ2X2
+ 45X combined effect of X171
R 7 1 pure X2 effect and X2
pure X1 effect
0 * ﬂ1X1
Py
Y
X2
»
X1

Different combinations of X7 and X2 give rise to values of weekly salary which lie on the

plane shown in the diagram, defined by the equation Y=/§ + . X + f.X,. This is the
nonrandom component of the model.
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The final element of the model is the error term, e. This causes the actual values of Y to
deviate from the plane. In this observation, e happens to have a positive value.
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A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether X7 and X2 are correlated or not.
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However we do assume that the effects of X7 and X2 on salary are additive. The impact of a
difference in X7 on salary is not affected by the value of X2, or vice versa.
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Slope coefficients are interpreted as partial slope/partial
regression coefficients:

- [1 b, = average change in Y associated with a unit change
in X,, with the other independent variables held constant
(all else equal);

-[1 b, = average change in Y associated with a unit change
in X,, with the other independent variables held constant
(all else equal).
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The regression coefficients are derived using the same least squares principle
used in simple regression analysis. The fitted value of Y in observation i
depends on our choice of bo, b1, and bz.
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i}i :bo +b1X1i +b2X2i

e.=Y-Y =Y -b-bX, —bX,

The residual e, in observation i is the difference between the actual and fitted values of Y.
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We define SSE, the sum of the squares of the residuals, and choose b, b,, and b, so as to
minimize it.
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First we expand SSE as shown, and then we use the first order conditions for minimizing it.
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MULIIPLE REGRESSION WITH TWO EXPLANATORY VARlABLES

b, =Y —b X, bX
Cov(X,, Y)Var(X,)-Cov(X,,Y)Cov(X,,X,)
Var(X,)Var(X,)—[Cov(X,, X,)[

b, =

Cov(X,,Y)Var(X,)-Cov(X,,Y)Cov(X,, X,)
Var(X,)Var(X,) - [COV(X . ¢ )]2

b, =

We thus obtain three equations in three unknowns. Solving for b,, b,, and b,, we obtain the
expressions shown above.
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_ Cov(X,, Y)Var(X,)-Cov(X,,Y)Cov(X,, X,)
Var(X,)Var(X,) - [COV(X1 , X )]2
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The expression for b is a straightforward extension of the expression for it in simple
regression analysis.
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However, the expressions for the slope coefficients are considerably more complex than
that for the slope coefficient in simple regression analysis.
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For the general case when there are many explanatory variables, ordinary algebra is
inadequate. It is necessary to switch to matrix algebra.



In matrix notation OLS may be written as:

Y=Xb+e
The normal equations in matrix form are now

XTY =X"™Xb
And when we solve it for b we get:

b= (X™X)'XTY

where Y is a column vector of the Y values and X is a matrix containing a column
of ones (to pick up the intercept) followed by a column of the X variables

containing the observations on them and b is a vector containing the estimators
of regression parameters.

M 1 X, X, b,

y= Y, Y = I X, Xy b= bl
b2

yn _1 Xln X2n_ ) B




A vector is a collection of n numbers or elements, collected either in a column (a column
vector) or in a row (a row vector).

A matrix is a collection, or array, of numbers of elements in which the elements are laid
out in columns and rows. The dimension of matrix is n * m where n is the number of rows
and m is the number of columns.

Types of matrices

A matrix is said to be square if the number of rows equals the number of columns.
A square matrix is said to be symmetric if its (i, j) element equals its (j, /) element.
A diagonal matrix is a square matrix in which all the off-diagonal elements equal zero,
that is, if the square matrix A is diagonal, then a; =0 for i#.

The transpose of a matrix switches the rows and the columns. That is, the transpose of
a matrix turns the n * m matrix A into the m ¥ n matrix denoted by AT, where the (i, j)
element of A becomes the (j, /) element of AT; said differently, the transpose of a matrix A
turns the rows of A into the columns of AT. The inverse of the matrix A is defined as the
matrix for which ATA=1. If in fact the inverse matrix A" exists, then A is said to be
invertible or nonsingular.

Vector and matrix multiplication

The matrices A and B can be multiplied together if they are conformable, that is, if the
number of columns of A equals the number of rows of B. In general, matrix multiplication
does not commute, that is, in general AB# BA.




Data for weekly salary based upon the length of employment and
age of employees of a large industrial corporation are shown in the table.

Calculate the OLS estimates
for regression coefficients for
the available sample.
Comment on your results.
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X1 —-length of employment (months)
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X2-age (years)

“EXAMPLE

i Y X1 X2

1] 639 | 330 46 1 330 46 639

2| 746 | 569 65 1 o569 65 746

3| 670 | 375 57 1 375 57 670

4] 518 | 113 47 1 113 47 518

5| 602 [ 215 41 1 215 41 602

6| 612 | 343 59 X 1 343 59 Y 612

7| 548 | 252 45 1 252 45 548

8| 591 | 348 57 1 348 57 591

9| 852 | 352 55 1 352 55 552
10| 529 | 256 61 1 256 61 529
11] 456 87 28 1 87 28 456
12| 674 | 337 51 1 337 51 674
13| 406 42 28 1 42 28 406
14| 529 | 129 37 1 129 37 529
15| 528 | 216 46 1 216 46 528
16| 592 | 327 56 1 327 56 592

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X | 330 | 569 | 375 | 113 | 215 | 343 | 252 | 348 | 352 | 256 87 337 42 120 | 216 | 327
46 65 o7 47 41 99 45 o7 95 61 28 o1 28 37 46 56
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XAMPLE

16 4291 779 9192
XX 4291 1417105 | 227875 XY 2617701
779 227875 39771 457709
| det | 2105037674 |
[ min11 1417105 | 227875 [min12] 4291 227875 [ min3 4291 1417105
227875 39771 779 39771 779 227875
| det | 4432667330 | | det [-6857264] | det | -126113170 ]
[ min21 4291 779 [min22] 16 779 [ min23 16 4291
227875 39771 779 39771 779 227875
| det | -6857264 | [ det [ 29495 | | det | 303311 |
| min31 4291 779 [ min32 16 779 | min33 16 4291
1417105 | 227875 4291 227875 4291 1417105
| det | -126113170 | | det | 303311 | | det | 4260099 |
| matrix of minors | cofactor matrix |
ey | 4432667330 [ 6857264 [ -126113170 4432667330 | 6857264 | -126113170
6857264 | 29495 303311 xX'xD | 6857264 | 29495 | -303311
126113170 | 303311 | 4260999 2126113170 | 303311 4260999




MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES EXAMPLE

E‘ﬁ-f 2 3:», : s

T "#w
2.1057 | 0,0033 |-0,0599 9192
") 0.0033 |0,00001 |-0,0001 X"Y | 2617701
-0,0599 | -0,0001 | 0,002 457709

vector of parameters' estimates

461 85 | =b0
b=(X"X)"'X"Y | 0671 |=b1
-1.383 | =b2

Y-weekly salary ($) X1 —length of employment (months) X2-age (years)

Our regression equation with two predictors (X1, X2):

y, =461,85+0,671- X, —1,383- X,
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These are our data points in 3dimensional space (graph drawn using Statistica 6.0)
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Data points with the regression surface (Statistica 6.0)
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Data points with the regression surface (Statistica 6.0) after rotation.



