
SIMPLE REGRESSION MODEL



This is an example plot of linear function: 
 

The nature of the relationship between variables can take 
many forms, ranging from simple mathematical functions to 
extremely complicated ones. The simplest relationship 
consists of a straight-line or linear relationship (linear 
function).  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SIMPLE REGRESSION MODEL

Suppose that a variable Y is a linear function of another variable X, with unknown 
parameters β0 and β1 that we wish to estimate.

β0

XX1 X2 X3 X4

Suppose that we have a sample of 4 observations with X values as shown.



If the relationship were an exact one, the observations would lie on a straight line 
and we would have no trouble obtaining accurate estimates of β0 and β1. When all 
empirical pairs of X-Y points lie on a straight line – it is called a functional or 
deterministic relationship.
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P4

In practice, most economic relationships are not exact and the actual values of Y 
are different from those corresponding to the straight line.
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P4

To allow for such divergences, we will write the model as Y = β0 + β1X + e, 
where e is a disturbance term.
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P4

Each value of Y thus has a nonrandom component, β0 + β1X, and a random 
component, e.  The first observation has been decomposed into these two 
components.
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P4

In practice we can see only the P points.
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P4

Obviously, we can use the P points to draw a line which is an approximation to 
the line Y = β0 + β1X.  If we write this line Y = b0 + b1X, b0 is an estimate of β0 
and b1 is an estimate of β1.
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However, we have obtained data from only a random sample of the 
population. For a sample, b0  and b1 can be used as estimates (estimators) of 
the respective population parameters β0 and β1

 

 
The intercept b0 and the slope b1  are the coefficients of the regression 

line. The slope b1  is the change in Y (increase, if >0, and decrease, if <0) 
associated with a unit change in X. The intercept is the value of Y when X=0; 
it’s the point at which the population regression line intersects the Y axis. In 
some cases the intercept has no real-world meaning (for example when X is 
the class size, Y is the test score – the intercept is the predicted value of test 
scores when there are no students in the class!).

Random error contains all the other factors besides X that determine 
the value of the dependent variable Y, for a specific observation.
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P4

The line is called the fitted model and the values of Y predicted by it are called 
the fitted values of Y.  They are given by the heights of the R points.
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   (fitted value)
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P4

XX1 X2 X3 X4

The discrepancies between the actual and fitted values of Y are known as the 
residuals.
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SIMPLE REGRESSION MODEL

Least squares criterion:

Minimize SSE (residual sum of squares), where

To begin with, we will draw the fitted line so as to minimize the sum of the 
squares of the residuals, SSE.  This is described as the least squares criterion.

19



SIMPLE REGRESSION MODEL

Why the squares of the residuals?  Why not just minimize the sum of the 
residuals?

Least squares criterion:

Why not minimize

20

Minimize SSE (residual sum of squares), where



P4

The answer is that you would get an apparently perfect fit by drawing a 
horizontal line through the mean value of Y.  The sum of the residuals would be 
zero.
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P4

You must prevent negative residuals from cancelling positive ones, and one 
way to do this is to use the squares of the residuals.
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SIMPLE REGRESSION MODEL

Since                               we are minimizing
 
  which has two unknowns, b0 and b1. A mathematical technique which 

determines the values of b0 and b1 that best fit the observed data is known as the 
Ordinary Least Squares method (OLS). 

Ordinary Least Squares is a procedure that selects the best fit line given a set 
of data points, by minimizing the sum of the squared deviations of the points from a 
line.   That is, if                      is the equation of the best line to fit through the data  
then in order to get this best line, using the least squares criteria, for each value 
data point (xi,yi) if                     where                     , then ei is the amount of deviation 
of  the data point from the line.   The least squares criteria minimizes, finds the slope 
b1 and the y-intercept b0 from the data, that minimizes the sum of the square 
deviations,        . 



SIMPLE REGRESSION MODEL

For the mathematically curious , I provide a condensed derivation of 
the coefficients. 
To minimize                                                                      determine the 

partial derivatives with respect to b0  and with respect to b1. These are:

Setting                       and solving for b0 and b1 results in equations given 
below.



Since there are two equations with two unknown, we can 
solve these equations simultaneously for b0 and b1 as 
follows:
 

 
ONLY FOR REGRESSION MODELS WITH ONE INDEPENDENT 
VARIABLE! 
We also note that the regression line always goes through the 
mean (           ).
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SIMPLE REGRESSION MODEL

In matrix notation OLS may be written as:  
Y = Xb + e  
The normal equations in matrix form are now  
  

 XT Y  = XTXb  

And when we solve it for b  we get:  
  b =  (XTX)-1XTY   

  
where Y is a column vector of the Y values and X is a matrix containing a 

column of ones (to pick up the intercept) followed by a column of the X 
variable containing the observations on it and b is a vector containing the 
estimators of regression parameters.  

                                                             
 



SIMPLE REGRESSION MODEL
We can state as follows:  
 

How to inverse XTX?  
1.    matrix determinant     
2.    minor matrix 

 
3.    cofactor matrix

 
4.    inverse matrix  
  

 



SIMPLE REGRESSION MODEL

EXAMPLE  
In this problem we were looking at the way home size is effected by the 

family income. We will use this model to try to predict the value of the 
dependent variable based on the independent variable. Also, the slope will 
help us to understand how the Y variable changes for each unit change in 
the X variable.  

Assume a real-estate developer is interested in determining the 
relationship between family income (X, in thousand of dollars) of the local 
resident and the square footage of their homes (Y, in hundreds of square 
feet). A random sample of ten families is obtained with the following results:  

  
 

X 22 26 45 37 28 50 56 34 60 40

Y  
 

16  
 

17  
 

26  
 

24  
 

22  
 

21  
 

32  
 

18  
 

30  
 

20  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Let’s try another example: 
X – commercial time (minutes)       Y – sales ($ hundred thousand) 

 





REGRESSION MODEL WITH TWO EXPLANATORY VARIABLES



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

Y

X2

X1

β0

Y = β0 + β1X1 + β2X2 + ei

1

This sequence provides a geometrical interpretation 
of a multiple regression model with two explanatory 
variables.Y – weekly salary ($)

X1 – length of employment (in months)
X2 – age (in years)

Specifically, we will look at weekly salary function model where weekly salary, Y, 
depend on length of employment X1, and age, X2.



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

Y

X2

X1

β0
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The model has three dimensions, one each for Y, X1, and X2.  The starting point for 
investigating the determination of Y is the intercept, β0. 

Y = β0 + β1X1 + β2X2 + ei

Y – weekly salary ($)
X1 – length of employment (in months)
X2 – age (in years)



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

Y

X2

X1

β0
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Literally the intercept gives weekly salary for those respondents who have no age (??) 
and no length of employment (??). Hence a literal interpretation of β0 would be unwise.

Y = β0 + β1X1 + β2X2 + ei

Y – weekly salary ($)
X1 – length of employment (in months)
X2 – age (in years)



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES
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Y

X2

The next term on the right side of the equation gives the effect of X1.  A one month of 
employment increase in X1 causes weekly salary to increase by β1dollars, holding X2 
constant.

X1

β0

pure X1 effect β0 + β1X1

Y = β0 + β1X1 + β2X2 + ei

Y – weekly salary ($)
X1 – length of employment (in months)
X2 – age (in years)



pure X2 effect
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X1

β0

β0 + β2X2

Y

X2
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Similarly, the third term gives the effect of variations in X2.  A one year of age increase 
in X2 causes weekly salary to increase by β2 dollars, holding X1 constant.

Y = β0 + β1X1 + β2X2 + ei



pure X2 effect

pure X1 effect
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X1

β0

β0 + β2X2

β0 + β1X1 + β2X2

Y

X2

β0 + β1X1

combined effect of X1 
and X2

7

Different combinations of X1 and X2 give rise to values of weekly salary which lie on the 
plane shown in the diagram, defined by the equation Y = β0 + β1X1 + β2X2.  This is the 
nonrandom component of the model.

Y = β0 + β1X1 + β2X2 + ei



pure X2 effect

pure X1 effect
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X1

β0

β0 + β2X2

β0 + β1X1 + β2X2

β0 + β1X1 + β2X2+ ei

Y

X2

combined effect of X1 
and X2

e
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The final element of the model is the error term, e.  This causes the actual values of Y to 
deviate from the plane.  In  this observation, e happens to have a positive value. 

β0 + β1X1

Y = β0 + β1X1 + β2X2 + ei



pure X2 effect

pure X1 effect
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X1

β0

β0+ β1X1+ β2X2

β0 + β1X1 + β2X2 + e

Y

X2

combined effect of X1 
and X2

e
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A sample consists of a number of observations generated in this way.  Note that the 
interpretation of the model does not depend on whether X1 and X2 are correlated or not.

β0 + β1X1

Y = β0 + β1X1 + β2X2 + ei

β0 + β2X2



pure X2 effect

pure X1 effect
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X1

β0

β0 + β1X1+ β2X2

β0 + β1X1 + β2X2+ e

Y

X2

combined effect of X1 
and X2

e

However we do assume that the effects of X1 and X2 on salary are additive.  
The impact of a difference in X1 on salary is not affected by the value of X2, or vice versa.

β0 + β1X1

Y = β0 + β1X1 + β2X2 + ei

β0 + β2X2



Slope coefficients are interpreted as partial slope/partial 
regression coefficients:

■ 🡪 b1 = average change in Y associated with a unit change 
in X1, with the other independent variables held constant 
(all else equal);

■🡪 b2 = average change in Y associated with a unit change 
in X2, with the other independent variables held constant 
(all else equal).

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

The regression coefficients are derived using the same least squares principle 
used in simple regression analysis.  The fitted value of Y in observation i 
depends on our choice of b0, b1, and b2.

11



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

The residual ei in observation i is the difference between the actual and fitted values of Y.
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MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

We define SSE, the sum of the squares of the residuals, and choose b0, b1, and b2 
so as to minimize it.

13



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

First we expand SSE as shown, and then we use the first order conditions for minimizing it.
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MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

We thus obtain three equations in three unknowns.  Solving for b0, b1, and b2,
 we obtain the expressions shown above.
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MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

The expression for b0 is a straightforward extension of the expression for it in simple 
regression analysis.
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MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

However, the expressions for the slope coefficients are considerably more complex than 
that for the slope coefficient in simple regression analysis.

17



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES

For the general case when there are many explanatory variables, ordinary algebra is 
inadequate.  It is necessary to switch to matrix algebra.

18



In matrix notation OLS may be written as:  

Y = Xb + e  

The normal equations in matrix form are now  

  XT Y  = XTXb  

And when we solve it for b  we get:  
  b =  (XTX)-1XTY   

 where Y is a column vector of the Y values and X is a matrix containing a column 
of ones (to pick up the intercept) followed by a column of the X variables 
containing the observations on them and b is a vector containing the estimators 
of regression parameters.                                                            

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES



MATRIX ALGEBRA: SUMMARY

A vector is a collection of n numbers or elements, collected either in a column (a column 
vector) or in a row (a row vector). 
A matrix is a collection, or array, of numbers of elements in which the elements are laid 
out in columns and rows. The dimension of matrix is n x  m where n is the number of rows 
and m is the number of columns.

Types of matrices
A matrix is said to be square if the number of rows equals the number of columns. 
A square matrix is said to be symmetric if its (i, j) element equals its (j, i) element.  
A diagonal matrix is a square matrix in which all the off-diagonal elements equal zero, 
that is, if the square matrix A is diagonal, then aij =0 for i≠j.
The transpose of a matrix switches the rows and the columns. That is, the transpose of 
a matrix turns the n x  m matrix A into the m x  n matrix denoted by AT, where the (i, j)  
element of A becomes the (j, i) element of AT; said differently, the transpose of a matrix A 
turns the rows of A into the columns of AT.  The inverse of the matrix A is defined as the 
matrix for which A-1A=1. If in fact the inverse matrix A-1 exists, then A is said to be 
invertible or nonsingular. 

Vector and matrix multiplication
The matrices A and B can be multiplied together if they are conformable, that is, if the 
number of columns of A equals the number of rows of B. In general, matrix multiplication 
does not commute, that is, in general AB≠ BA. 



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Data for weekly salary based upon the length of employment and 
age of employees of a large industrial corporation are shown in the table.

Calculate the OLS estimates 
for regression coefficients for 
the available sample. 
Comment on your results.



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Y-weekly salary ($) X1 –length of employment (months)     X2-age (years)



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Y-weekly salary ($) X1 –length of employment (months)     X2-age (years)

Our regression equation with two predictors (X1, X2): 



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

These are our data points in 3dimensional space (graph drawn using Statistica 6.0)

X1X1

Y

X2



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Data points with the regression surface (Statistica 6.0)

X1

X2

Y b0



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Data points with the regression surface (Statistica 6.0) after rotation. 

Y

X1

X2



There are times when a variable of interest in a regression cannot possibly be 

considered quantitative. An example is the variable gender. 

Although this variable may be considered important in predicting a quantitative 

dependent variable, it cannot be regarded as quantitative. 

Dummy variables 
in econometric models

The best course of action in such case is to take separate samples of males and 

females and conduct two separate regression analyses. 

The results for the males can be compared with the results for the females to see if 

the same predictor variables and the same regression coefficients results. 



If a large sample size is not possible, a dummy 

variable can be employed to introduce qualitative 

variable into the analysis. 

A DUMMY VARIABLE 

IN A REGRESSION ANALYSIS 

IS A QUALITATIVE OR CATEGORICAL VARIABLE 

THAT IS USED AS A PREDICTOR VARIABLE. 



For example, a male could be designated with the 

code 0 and the female could be coded as 1. 

Each person sampled could then be measured as 

either a 0 or a 1 for the variable gender, and this 

variable, along with the quantitative variables for 

the persons, could be entered into a multiple 

regression program and analyzed. 



Example 1
Returning to real-estate developer, we noticed that all 

the houses in the population were from three 

neighborhoods, A, B, and C. 



Using these data, we can construct the necessary 

dummy variables and determine whether they 

contribute significantly to the prediction of home 

size (Y). 

One way to code neighborhoods would be to define:



However, this type of coding has many problems. 

First, because 0 < 1< 2, the codes imply that 

neighborhood A is smaller then neighborhood B, which 

is smaller then neighborhood C. A better procedure is 

to use the necessary number of dummy variables to 

represent the neighborhood. 



To represent the three neighborhoods, we use two 

dummy variables, by letting



What happened to neighborhood C? It is not 

necessary to develop a third dummy variable.

IT IS VERY IMPORTANT 

THAT YOU NOT INCLUDE IT!! 

If you attempted to use three such dummy variables 

in your model, you would receive a message in your 

computer output informing you that no solution exists 

for this model. 



Why? 
One predictor variable is a linear combination 

(including a constant term) of one or more other 

predictors, then mathematically no solution exists for 

the least squares coefficients. To arrive at a usable 

equation, any such predictor variable must not be 

included. We don’t lose any information – this 

excluded category is the reference system. The 

coefficients are the measure of the categories 

included in comparison to this one excluded.



The final array of data is 



·      If family income increases 1000$ the average 

home size will increase about 0,082 hundred of 

square feet (holding family size constant)

·      If family size increases 1 person the average 

home size will increase about 3,27 hundred of 

square feet (holding family income constant)



·      The houses located in neighborhood A are 1,613 

hundred of square feet bigger then houses from 

neighborhood C. 

·      The houses located in neighborhood B are 0,9 

hundred of square feet smaller then houses from 

neighborhood C.



Example 2 

Joanne Herr, an analyst for the Best Foods grocery 

chain, wanted to know whether three stores have 

the same average dollar amount per purchase or 

not. Stores can be thought of a single qualitative 

variable set at 3 levels – A, B, and C.  



A model can be set up to predict the dollar amount 

per purchase:

where 

Y^- expected dollar amount per purchase



The data

The variables X1 and X2 

are dummy variables 

representing purchases in 

store A or B, respectively. 
Note that the three levels of 

the qualitative variable have 

been described with only two 

variables. 



The regression equation 



· the average dollar amount per purchase is for store A 

is 10,01$ higher comparing with store C

· the average dollar amount per purchase is for store B 

is 9,42$ higher comparing with store C

always compare to the excluded category!!



Store A

Store B

Store C


