Choice of the functional form

Exponential function

Exponential functions are functions which can be represented by graphs similar to the graph on the right

As you could see in the graph, the larger the base, the faster the function increased

If we place a negative sign in front of the x, the graphs will be reflected(flipped) across the y-axis

Exponential function

Exponential functions decrease if 0 < b₁ < 1 and increase if b₁ > 1

Power function

Logarithmic function

Hyperbolic function

Quadratic function

Logistic function

If growth begins slowly, then increases rapidly and eventually levels off, the data often can be model by an "S-curve", or a logistic function.

General information

 NONLINEAR MODELS OFTEN ARE USED FOR SITUATION IN WHICH THE RATE OF INCREASE OR DECREASE IN THE DEPENDENT VARIABLE (WHEN PLOTTED AGAINST A PARTICULAR INDEPENDENT VARIABLE) IS NOT CONSTANT.

General information

 SOME OF THESE MODELS REQUIRED A TRANSFORMATION TO THE INDEPENDENT VARIABLE.

Transformation

LogarithmsSubstitution

Data transformations can be used to convert an equation into a linear form

Exponential function

Model	Scatter plot	Transformation	Model after
			transformation
$\hat{y} = b_0 b_1^x$	7	Logarithms	$y' = b_0' + b_1 x'$
exponential		0.05	where y'=log y
function			b_0 '=log b_0
			b_1 '=log b_1
			1995

Power function

Model	Scatter plot	Transformation	Model after
	896274		transformation
$\hat{v} = b_0 x^{b1}$	2	Logarithms	$y' = b_0' + b_1 x'$
nower			where y'=log y
function			x'=log x
runonon			b_0 '=log b_0
			NOTON INTERNET INTERNET

Quadratic function

Model	Scatter plot	Transformation	Model after
10	101.10	2	transformation
$\hat{y} = b_0 + b_1 x + b_2 x^2$	\ /	Substitution	$y = b_0 + b_1 x_1 + b_2 x_2$
quadratic function			where
			$\mathbf{x}_1 = \mathbf{x}_1$
			$\mathbf{x}_2 = \mathbf{x}^2$

Polynomial function

Model	Scatter	Transformation	Model after
	plot		transformation
$\hat{y} = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_k x^k$		Substitution	$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_k x_k$
polynomial function			where
			$\mathbf{x}_1 = \mathbf{x}$
	($x_2 = x^2$
			$x_3 = x^3$
			$\mathbf{x}_{\mathbf{k}} = \mathbf{x}^{\mathbf{k}}$

Hyperbolic function

Model	Scatter plot	Transformation	Model after
	201703		transformation
$\hat{y} = b_0 + b_1 \frac{1}{x}$ hyperbolic function		Substitution	$y = b_0 + b_1 x'$ where x' = 1/x

Logarithmic function

Model	Scatter plot	Transformation	Model after
	194		transformation
$\hat{y} = b_0 + b_1 \ln x$		Substitution	$y = b_0 + b_1 x'$
logarithmic			where
function			$x' = \ln x$
-			

Logistic function

Model	Scatter plot	Transformation	Model after
0	275 12	e	transformation
$\hat{v} = b_0$		Substitution	$y' = b_0' + b_1' x'$
$\int y - \frac{1}{1 + b_1 e^{-x}}$			where
logistic			y'=1/y
function			x'=e-x
			b ₀ '=1/b ₀
			$b_1'=b_1/b_0$

Linear function

X	Y	ΔΧ	ΔY	$\Delta Y / \Delta X$
1,2	3,08	-	-	-
1,4	3,58	0,2	0,5	2,50
1,6	4,08	0,2	0,5	2,50
1,8	4,58	0,2	0,5	2,50

Exponential function

Х	Y	ΔΧ	ΔY	$\Delta Y / \Delta X$	log y	log y/x
1,2	4,963	-	-	-	0,6957	0,580
1,4	6,482	0,2	1,519	7,595	0,8117	0,580
1,8	11,086	0,4	4,604	11,51	1,0448	0,580
3	54,872	1,2	43,786	36,4883	1,7394	0,580

 $b_1 = 10^{0,580} = 3,8$

Power function

Χ	Y	ΔX	ΔY	$\Delta Y / \Delta X$	log y	log y/x	log x	log y/log x
1,4	2,027	-	_	-	0,3069	0,219	0,146	2,10
2	4,28	0,6	2,253	3,755	0,6314	0,316	0,301	2,10
5	29,37	3	25,085	8,36167	1,4678	0,294	0,699	2,10
9	100,9	4	71,535	17,88375	2,0039	0,223	0,954	2,10

b₁ = 2,10

Comparison

EXPONENTIAL	POWER
Independent variable is a power exponent	Independent variable is a power base
<u>Form of</u>	model:
$\hat{y} = b_0 \cdot b_1^x$	$\hat{y} = b_0 \cdot x^{b_1}$
Interpretation of	the coefficients
b_0^{-} is the value of Y if independent variable is equal to zero.	b ₀ - is the value of Y if independent variable is equal to one
b_1 - is the growth rate Y. If the independent variable increases 1 unit, the dependent variable will change (increase, if $b_1 > 1$, or decrease, if $b_1 < 1$) b_1 times, on average {or $(b_1-1) \times 100[\%]$, on average}.	b_1 - is the elasticity Y. If the independent variable increases 1 %, the dependent variable will change (increase, if $b_1 > 0$, or decrease, if $b_1 < 0$) b_1 %, on average.

Comparison

EXPONENTIAL

POWER

Linear tra	nsformation - log	garithms
$\log \hat{y} = \log b_0 + x \cdot \log b_1$	Linear form	$\log \hat{y} = \log b_0 + b_1 \cdot \log x$
Parame	eters estimation – (OLS:
$\begin{bmatrix} \log b_0 \\ \log b_1 \end{bmatrix} = (X^T X)^{-1} X^T \log Y$	$\begin{bmatrix} \log b_0 \\ b_1 \end{bmatrix} =$	$(\log X^T \log X)^{-1} \log X^T \log Y$
<u>N</u>	latrix and vector:	
$X^{T}X = \begin{bmatrix} n & \sum x \\ \sum x & \sum x^{2} \end{bmatrix}$	$\log X^T$ le	$\log X = \begin{bmatrix} n & \sum \log x \\ \sum \log x & \sum (\log x)^2 \end{bmatrix}$
$X^{T} \log Y = \begin{bmatrix} \sum \log y \\ \sum x \cdot \log y \end{bmatrix}$	$\log X^T$	$\log Y = \begin{bmatrix} \sum \log y \\ \sum \log x \cdot \log y \end{bmatrix}$

Comparison

EXPONENTIAL

POWER

After $\log b_0$ and $\log b_1$ are estimated we should check goodness of fit (standard error of the estimate, indetermination coefficient, determination coefficient, test parameters individually and check residuals' characteristics – at least linearity) for the linear form.

$$\log \hat{y} = \log b_0 + x \cdot \log b_1 \qquad \log \hat{y} = \log b_0 + b_1 \cdot \log x$$

$$S_e = \sqrt{\frac{\sum (\log y_i - \log \hat{y}_i)^2}{n - k - 1}} \qquad S_e = \sqrt{\frac{\sum (\log y_i - \log \hat{y}_i)^2}{n - k - 1}}$$

To interpret the results, antilog b_0 and b_1 should be calculated To interpret the results, antilog b_0 should be calculated