Choice of the functional form

What if...

Exponential function

Exponential functions are functions which can be represented by graphs similar to the graph on the right

Green $=e^{x}$
Black $=3^{x}$
$\operatorname{Red}=2^{x}$

As you could see in the graph, the larger the base, the faster the function increased

If we place a negative sign in front of the x , the graphs will be reflected(flipped) across the y-axis

$$
\text { Yellow }=4^{-x} \quad \text { Green }=\mathbf{e}^{-\mathbf{x}}
$$

$$
\text { Black }=3^{-x}
$$

Red $=\mathbf{2}^{-\mathrm{x}}$

Exponential function

- Exponential functions decrease if $0<\mathrm{b}_{1}<1$ and increase if $b_{1}>1$

Power function

Logarithmic function

Hyperbolic function

Quadratic function

Logistic function

Logistic Growth Function

If growth begins slowly, then increases rapidly and eventually levels off, the data often can be model by an "S-curve", or a logistic function.

General information

- NONLINEAR MODELS OFTEN ARE USED FOR SITUATION IN WHICH THE RATE OF INCREASE OR DECREASE IN THE DEPENDENT VARIABLE (WHEN PLOTTED AGAINST A PARTICULAR INDEPENDENT VARIABLE) IS NOT CONSTANT.

General information

- SOME OF THESE MODELS REQUIRED A TRANSFORMATION TO THE INDEPENDENT VARIABLE.

Transformation

- Logarithms
 - Substitution

Data transformations can be used to convert an equation into a linear form

Exponential function

Model	Scatter plot	Transformation	Model after transformation
$\hat{y}=b_{0} b_{1}{ }^{x}$ exponential function			Logarithms
$y^{\prime}=b_{0}{ }^{\prime}+b_{1} x^{\prime}$			
where $\mathrm{y}^{\prime}=\log \mathrm{y}$			
$\mathrm{b}_{0}{ }^{\prime}=\log \mathrm{b}_{0}$			
$\mathrm{~b}_{1}=\log \mathrm{b}_{1}$			

Power function

Model	Scatter plot	Transformation	Model after transformation
$\hat{y}=b_{0} x^{b 1}$ power function		Logarithms	$y^{\prime}=b_{0}{ }^{\prime}+b_{1} x^{\prime}$ where $\mathrm{y}^{\prime}=\log \mathrm{y}$ $\mathrm{x}^{\prime}=\log \mathrm{x}$ $\mathrm{b}_{0}{ }^{\prime}=\log \mathrm{b}_{0}$

Quadratic function

$\left.\begin{array}{|l|c|l|l|}\hline \text { Model } & \text { Scatter plot } & \text { Transformation } & \begin{array}{l}\text { Model after } \\ \text { transformation }\end{array} \\ \hline \begin{array}{l}\hat{y}=b_{0}+b_{1} x+b_{2} x^{2} \\ \text { quadratic function }\end{array} & & / & \text { Substitution }\end{array} \begin{array}{l}y=b_{0}+b_{1} x_{1}+b_{2} x_{2} \\ \text { where } \\ \mathrm{x}_{1}=\mathrm{x} \\ \mathrm{x}_{2}=\mathrm{x}^{2}\end{array}\right]$

Polynomial function

Model	Scatter plot	Transformation	Model after transformation
$\hat{y}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots+b_{k} x^{k}$ polynomial function		Substitution	$y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{k} x_{k}$ where
		$\mathrm{x}_{1}=\mathrm{x}$ $\mathrm{x}_{2}=\mathrm{x}^{2}$ $\mathrm{x}_{3}=\mathrm{x}^{3}$ $\mathrm{x}_{\mathrm{k}}=\mathrm{x}^{\mathrm{k}}$	

Hyperbolic function

Model	Scatter plot	Transformation	Model after transformation
$\hat{y}=b_{0}+b_{1} \frac{1}{x}$ hyperbolic function		Substitution	$y=b_{0}+b_{1} x^{\prime}$ where $\mathrm{x}^{\prime}=1 / \mathrm{x}$

Logarithmic function

Model	Scatter plot	Transformation	Model after transformation
$\hat{y}=b_{0}+b_{1} \ln x$ logarithmic function		Substitution	$y=b_{0}+b_{1} x^{\prime}$ where $\mathrm{x}^{\prime}=\ln \mathrm{x}$

Logistic function

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Model } & \text { Scatter plot } & \text { Transformation } & \begin{array}{l}\text { Model after } \\
\text { transformation }\end{array} \\
\hline \begin{array}{l}\hat{y}=\frac{b_{0}}{1+b_{1} e^{-x}}\end{array} & & \text { Substitution } & \begin{array}{l}y^{\prime}=b_{0}{ }^{\prime}+b_{1}{ }^{\prime} x^{\prime} \\
\text { where } \\
\text { logistic } \\
\text { function }\end{array}
$$

\mathrm{y}^{\prime}=1 / \mathrm{y}\end{array}\right\}\)| $\mathrm{x}^{\prime}=\mathrm{e}^{-\mathrm{z}}$ |
| :--- |
| $\mathrm{b}_{0}{ }^{\prime}=1 / \mathrm{b}_{0}$ |
| $\mathrm{~b}_{1}{ }^{\prime}=\mathrm{b}_{1} / \mathrm{b}_{0}$ |

Linear function

X	Y	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$	$\Delta \mathrm{Y} / \Delta \mathrm{X}$
1,2	3,08	-	-	-
1,4	3,58	0,2	0,5	2,50
1,6	4,08	0,2	0,5	2,50
1,8	4,58	0,2	0,5	2,50
	$\mathrm{~b}_{1}=2,50$			

Exponential function

X	Y	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$	$\Delta \mathrm{Y} / \Delta \mathrm{X}$	$\log \mathrm{y}$	$\log \mathrm{y} / \mathrm{x}$
1,2	4,963	-	-	-	0,6957	0,580
1,4	6,482	0,2	1,519	7,595	0,8117	0,580
1,8	11,086	0,4	4,604	11,51	1,0448	0,580
3	54,872	1,2	43,786	36,4883	1,7394	0,580

$\mathrm{b}_{1}=10^{0,580}=3,8$

Power function

X	Y	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$	$\Delta \mathrm{Y} / \Delta \mathrm{X}$	$\log \mathrm{y}$	$\log \mathrm{y} / \mathrm{x}$	$\log \mathrm{x}$	$\log \mathrm{y} / \log \mathrm{x}$
1,4	2,027	-	-	-	0,3069	0,219	0,146	2,10
2	4,28	0,6	2,253	3,755	0,6314	0,316	0,301	2,10
5	29,37	3	25,085	8,36167	1,4678	0,294	0,699	2,10
9	100,9	4	71,535	17,88375	2,0039	0,223	0,954	2,10

$$
b_{1}=2,10
$$

Comparison

EXPONENTIAL

POWER

Independent variable is a power exponent

Form of model:

$$
\hat{y}=b_{0} \cdot b_{1}^{x} \quad \hat{y}=b_{0} \cdot x^{b_{1}}
$$

b_{0} - is the value of Y if independent variable is equal to zero.
b_{1} - is the growth rate Y. If the independent variable increases 1 unit, the dependent variable will change (increase, if $\mathrm{b}_{1}>1$, or decrease, if $\left.\mathrm{b}_{1}<1\right) \mathrm{b}_{1}$ times, on average $\{$ or $\left(b_{1}-1\right) \times 100[\%]$, on average $\}$.
$\mathrm{b}_{0}-$ is the value of Y if independent variable is equal to one
b_{1} - is the elasticity Y. If the independent variable increases 1%, the dependent variable will change (increase, if $\mathrm{b}_{1}>0$, or decrease, if $\left.\mathrm{b}_{1}<0\right) \mathrm{b}_{1} \%$, on average.

Independent variable is a power base

Interpretation of the coefficients

Comparison

Linear transformation - logarithms

$$
\log \hat{y}=\log b_{0}+x \cdot \log b_{1} \quad \underline{\text { Linear form }} \quad \log \hat{y}=\log b_{0}+b_{1} \cdot \log x
$$

Parameters estimation - OLS:

Matrix and vector:

$$
\begin{array}{ll}
X^{T} X=\left[\begin{array}{cc}
n & \sum x \\
\sum x & \sum x^{2}
\end{array}\right] & \log X^{T} \log X=\left[\begin{array}{cc}
n & \sum \log x \\
\sum \log x & \sum(\log x)^{2}
\end{array}\right] \\
X^{T} \log Y=\left[\begin{array}{c}
\sum \log y \\
\sum x \cdot \log y
\end{array}\right] & \log X^{T} \log Y=\left[\begin{array}{c}
\sum \log y \\
\sum \log x \cdot \log y
\end{array}\right]
\end{array}
$$

Comparison

After $\log b_{0}$ and $\log b_{1}$ are estimated we should check goodness of fit (standard error of the estimate, indetermination coefficient, determination coefficient, test parameters individually and check residuals' characteristics - at least linearity) for the linear form.

$$
\begin{array}{cc}
\log \hat{y}=\log b_{0}+x \cdot \log b_{1} & \log \hat{y}=\log b_{0}+b_{1} \cdot \log x \\
S_{e}=\sqrt{\frac{\sum\left(\log y_{i}-\log \hat{y}_{i}\right)^{2}}{n-k-1}} & S_{e}=\sqrt{\frac{\sum\left(\log y_{i}-\log \hat{y}_{i}\right)^{2}}{n-k-1}}
\end{array}
$$

To interpret the results, antilog b_{0} and b_{1} should be calculated

To interpret the results, antilog b_{0} should be calculated

