Chapter

Image Quality, Digital Technology, and Radiation Protection

Kenneth L. Bontrager John P. Lampignano

Image Quality Factors—Film-Screen Systems

1. Density

2. Contrast

3. Resolution

4. Distortion

Exposure Factors (Technique)

- Kilovoltage (kV)
 Milliamperage (mA)
- 3. Exposure time (seconds)

- mAs (milliampereseconds)

Density

- Amount of blackness
- Controlling factors:
 - mAs (mA × time)

-kV

- Influencing factors:
 - Source image receptor distance (SID)
 - Screen and IR speed

Density Change Rule

- 15% change in kV (similar to doubling mAs)
- Examples:
 80 kV × .15 = 12 kV
 60 kV × .15 = 9 kV

Density Change Rules

Density adjustment rule:

25% to 30% increase in mAs (minimum change)
 Density repeat rule:

Doubling mAs (to correct density on repeats)

Anode Heel Effect

- More intense under cathode
- Increase with
 - Small focal spot
 - Shorter SID
 - Larger IR size
- Application
 - Thicker parts at cathode

Percent intensity of x-ray beam (more pronounced at shorter SID and larger IR)

Compensating Filters

Compensating filters filter out a portion of the primary beam toward the thin or less dense part of the body that is being imaged.

Types of compensating filters include the following:

- Wedge filter
- Trough
- Boomerang

Compensating Filters

Wedge filter

Boomerang filter

Benefits of Compensating Filter

Radiographic Contrast

Differences (variation) in density
Controlling factor—kV

High vs. Low Contrast

- High contrast:
 - Short scale
 - 50 kV (800 mAs)

- Low contrast:
 - Long scale
 - 110 kV (20 mAs)

Off-Center Grid Cutoff

affiliate of Elsevier Inc.

Off-Focus Grid Cutoff

Off-focus grid, excessive SID (results in overall decrease in image density)

Upside-Down Grid Cutoff

Resolution (Definition)

- Recorded sharpness of structures
- Lack of definition is blur or unsharpness.
- Motion is greatest deterrent (two types).

Motion

Voluntary motion (breathing)

Involuntary motion (peristalsis)

Image Quality Summary Chart

- 1. Small focal spot—Use small focal spot whenever possible to improve detail.
- 2. Shorter exposure time—Use shortest exposure time possible to control voluntary and involuntary motion.
- 3. Film-screen speed—Use faster film-screen speed to control voluntary and involuntary motion.
- 4. SID—Use longer SID to improve detail.

5. OHD_Use shorter OID to improve detail.

Focal Spot Size

Distortion (Magnification)

- Misrepresentatio
 n of object size
 or shape
 X-ray beam
 - divergence

- Controlling factors
- SID (source image receptor distance)
- OID
- Object IR alignment
- CR alignment

- Controlling factors

 SID
- OID (object image receptor distance)

- Controlling factors

 SID
 OID
- Object IR alignment

"Open" joint spaces

"Closed" joint spaces

Digits not parallel—joints not open

- Controlling factors
- SID
- Object IR alignment
- CR alignment

CR Alignment

• CR parallel to joint

• CR not parallel to joint

Which of the following is **NOT** a quality factor for film-based radiography?

- A. Density
- B. Focal spot size
- c. Contrast
- D. Distortion
- E. Resolution

The primary controlling factor for density is

- A. mAs
- B. kV
- C. SID
- D. **OID**

When the **anode heel rule** is applied, the thicker aspect of the anatomy should be placed under the cathode end of the x-ray tube.

- A. True
- B. False

Which of the following is *not* a type of compensating filter?

- A. Wedge
- B. Boomerang
- c. Slotted
- D. Trough

What is the primary controlling factor for radiographic contrast?

- A. mAs
- в. kV
- c. SID
- D. Focal spot size

What type of grid cutoff will occur if a shorter SID is used than what is specified for a particular grid?

- A. Off-center
- B. Off-level
- c. Off-focus
- D. Off-distance

Image Quality in Digital Radiography

Display matrix

Pixel

Processing digital image

Exposure controls-kV, mAs, and time
Image Quality in Digital Radiography

- Brightness
- Contrast
- Resolution
- Distortion
- Exposure index
- Noise

Brightness

Intensity of light representing individual pixels in image

AR shoulder—high brightness

AP shoulder—less brightness

Contrast

Differences in brightness between light and dark areas of image

AP shoulder—lower contrast

Resolution

- Recorded Sharpness of Structures on Image Controlling factors:
- Acquisition pixel size
 - Inherent to the digital imaging detector
- Display matrix
 - Dependent on capabilities of the display monitor

Misrepresentation of Object Size or Shape

- Controlling factors:
- SID
- OID
- CR alignment

Exposure Index (referred to by some manufacturers as sensitivity "S" numbers)

A numeric value that is representative of the exposure the image receptor received May be inversely or directly proportional to radiation striking the image receptor Key in verifying optimal digital image is obtained with least dose to patient

Exposure Index

- Dependent on the intensity of the radiation striking the detector, which is the effect of
 - mAs
 - kV
 - Total detector area irradiated
- Objects exposed (air, metal implants, patient anatomy)

Low exposure index (high "S" number) Underexposed

Acceptable exposure index

High exposure index (low "S" number)

Acceptable exposure index

Noise

- Random disturbance that obscures image clarity
- High signal-to-noise ratio (SNR) is desirable.
- Low signal-to-noise ratio (SNR) is undesirable.

Acceptable SNR (good image quality)

Low SNR (poor image quality)

Post-processing

- Changing or enhancing the electronic image to improve diagnostic quality
- Algorithms applied to improve diagnostic quality of image
- Post-processing cannot improve low SNR image.

Post-processing Options

- Windowing
- Smoothing
- Magnification
- Edge enhancement
- Subtraction
- Image reversal
- Annotation

Chest without any post-processing

Chest with image reversal

Subtracted and magnified shoulder angiogram

Highly complex mathematical formulas are called

- A. Binary codes
- B. Exposure indices
- c. Equalization filters
- D. Algorithms

The intensity of light that represents the individual pixels in the digital image on the monitor is the definition for

- A. Brightness
- B. Contrast
- c. Density
- D. Noise

Random disturbance that obscures or reduces clarity is the definition for

- A. Noise
- B. Resolution
- c. SNR
- D. Distortion

A low SNR digital image can be enhanced through post-processing techniques.

- A. True
- B. False

Applications of Digital Technology

Computed tomography (CT), one of the first applications of computers in radiography

Computed Radiography (CR)

Image Plate Reader/Processor and Workstation

Why is it important to collimate and use lead blockers with CR?

Direct Digital Radiography (DR)

DR Chest Imaging System

DR Mammography Unit

Steps of Image Production Comparison

PACS Network

Provide Definitions for the Following Digital-Related Acronyms:

- PACS
- □ RIS
- I HIS
- HL7
- DICOM
- □ IP
- □ IR
- SNR

Review

- What is the difference between "window level" and "window width"?
- What is the difference between "density" and "brightness"?
- Define the term "noise."

Radiation Protection

PatientFellow workersSelf

Units of Radiation

- Roentgen (R) used for measurements in air
- Rad (radiation absorbed dose) used for patient dose purposes
- Rem (radiation equivalent man) used for worker protection purposes

Units of Radiation (traditional and SI units)

Traditional	SI Units
 Roentgen 	Coulombs/kg of air
 Rad 	Gray (Gy)
• Rem	Sievert (Sv)
	Copyright © 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

Dose-Limiting Recommendations Replaced MPD (maximum permissible dose) in 1994

- Occupationally exposed workers
 Annual: 5 rem (50 mSv) per year (ED)
 Cumulative: 1 rem (10 mSv) times years of age
- General population
 - .1 rem (1 mSv) per year

Pregnant Technologists

- What is the dose limit for a pregnant technologist per month?
- What is it for the entire gestational period?

Personnel Monitoring

- Film badge
- TLD (thermoluminescen t dosimeter)
- OSL (optically stimulated luminescence)
- Worn at waist or chest level

or

on collar during fluoroscopy Consult RSO.

ALARA Principles

- 1. Always wear a personnel monitor.
- 2. Radiology personnel should not restrain patients.
- 3. Sound radiographic exposure factors
- 4. Cardinal rules of radiation protection:
 - Time
 - Distance
 - Shielding

Mobile fluoroscopy or C-arm

Fluoroscopy Safety Practices

Bucky slot cover
Lead drape
.5 mm lead apron
Exposure limit: 10 R/min

Thyroid shield with protective apron

Patient Protection

Minimum repeat radiographs - Clear instructions - Positioning and exposure factors

1.

Radiation Protection Practices

- 1. Minimum repeat radiographs
- 2. Correct filtration
 - Inherent and added
 - 2.5 mm Al total

 Close four-sided collimation: One of the best ways of reducing patient exposure! (Remember divergence of x-ray beam.)

Radiation Protection Practices

- 1. Minimum repeat radiographs
- 2. Correct filtration
- 3. Accurate collimation
- Types of collimators
 - Manual type
 - Positive-beam limitation (PBL)

Radiation Protection

- 1. Minimum repeat radiographs
- 2. Correct filtration
- 3. Accurate collimation
- 4. Specific area shielding
 - Shadow shields
 - Contact shields

Vinyl-covered lead shield

Radiation Protection

- Gonadal contact shields
 - 1 mm lead equivalent
 Reduces dose 50% to
 90%

-Female ovarian shield

Possible shapes

Radiation Protection

- 1. Minimum repeat radiographs
- 2. Correct filtration
- 3. Accurate collimation
- 4. Specific area shielding
- 5. Protection for pregnancies

IF YOU ARE PREGNANT PLEASE TELL THE TECHNOLOGIST

SENORAS-SI ESTAN EMBARAZADAS FAVOR DE NOTIFICAR A LOS TECHNOLOGISTAS

The SI unit equivalent for Rad is

- A. Coulombs/kg of air
- B. Gray
- c. Sievert
- D. Curie

What is the annual dose limit for a technologist per year?

- A. 5 mSv
- в. **15 mSv**
- c. 50 mSv
- D. 500 mSv

What minimum lead thickness or equivalency must a protective apron possess when worn for a fluoroscopy procedure?

- A. .5 mm Pb/Eq
- в. **1.0 mm Pb/Eq**
- c. 1.5 mm Pb/Eq
- D. 2.5 mm Pb/Eq

What is the most effective way to reduce patient dose?

- A. Use of high kV
- B. Increase in added filtration in x-ray tube
- c. Use of gonadal shielding
- D. Close four-sided collimation

Chapter 2 Image Quality, Digital Technology, and Radiation Protection

- The End -

Chapter 2 Image Quality, Digital Technology, and Radiation Protection

- The End -

Reference Page

 Bontrager, K. L., Lampignano, J. P. <u>Textbook</u> of Positioning and Related Anatomy, 7th Edition, Copyright 2010 : Mosby/Elsevier Inc., ISBN 978-0-323-05410-2