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Tunnel diode

Tunneling of electrons through a potential barrier is an effect predicted
by quantum mechanics that gives the electrons a finite probability of
passing through the barrier, as opposed to the electrons needing an energy
greater than the barrier potential energy to overcome it.

To illustrate this effect, let us take an infinite potential well and introduce

a finite potential barrier in it (Figure 10.1A). The wave function of an

electron in this potential well can be calculated using numerical

simulations (see Problems 1.3 and 1.4). Let us focus on the lowest or

ground-state energy level. In the absence of a potential barrier t?;z lowest
T

energy of an electron can be found using Equation 1.1.11: £ = Tt For

a well width of 50 nm the corresponding lowest energy value is
approximately 0.15 meV. Let us introduce a potential barrier 40 mV in
height and 2 nm in width inside the potential well. According to classical
mechanics an electron confined in the left-hand side of the potential well
does not possess enough energy to overcome the 40-mV potential barrier
and venture into the right part of the well. If the calculation is made using
quantum mechanics, on the other hand, one finds that there is a non-zero

probability of finding the electron at the right of the potential barrier, as
shown in Figure 10.1B.
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Figure 10.1: A: Infinite potential well with a potential
barrier inside it; B: Corresponding lowest-energy wave
function. i



Tunnel diode

In a more general sense, tunneling through a potential barrier can be
characterized by a transmission coefficient which represents the
probability of an electron passing through the barrier. The value of this
transmission coefficient depends on the shape of the barrier (rectangular,
triangular, etc.), on its width and its height. The thinner and the lower the
barrier, the higher the transmission coefficient. In the particular case of a
rectangular barrier, the transmission coefficient, 7, is given by:

!

sinhz(% m)

where a and V are the width and the height of the Potcntial barrier,
respectively, and E is the energy of the electron (E<V).[7]
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A tunnel diode is a PN junction where both P- and N-type regions are
degenerately doped. As a result, the Fermi level in the N-type material is
above the minimum of the conduction band and the Fermi level in the P-
type material is below the maximum of the valence band. The doping
concentrations are so high that the width of the space-charge region at
the junction is extremely thin (Equation 4.2.12), and usually measures less
than 10 nm.

As in any PN junction the existence of a space-charge region gives rise to
a potential barrier. This barrier height is noted @, which is a function of
the doping concentrations according to Equation 4.2.9. The barrier
prevents electrons from diffusing from the N-type region into the P-type
material and vice-versa. @, is relatively large because of the doping levels,
but the width of the barrier is very small (€ 10 nm).



Tunnel diode

In order for electrons to tunnel through the potential barrier certain
conditions must be met:

1- The energy of the electron must be conserved. In terms of an energy band
diagram representation, this condition means that an electron tunneling from
the N-type region into the P-type region must do so in a horizontal trajectory
(Figure 10.2B).

2- There must be occupied states on the side of the junction that emits electrons.

3- There must be empty permitted states on the side of the junction which
receives the electrons. Because of condition (1), these states must have the
same energy as the states defined in (2).

4- The potential barrier height must be low enough and its width must be small
enough for tunneling to take place.

The electron current from the N-type conduction band into the P-type
valence band is given by:

ey = 4 [Fe(E) ne(E) Ty (1 - Fy(E)] ny(E) dE (10.1.1)

where A is the area of the diode, F.(E) and Fy(E) are the Fermi-Dirac
distribution functions in the N-type conduction band and the P-type
valence band, respectively, n.(E) and n,(E) are the density of states in the
conduction and valence band, and T; is the tunneling probability of an
electron. This probability depends essentially on the width of the
potential barrier, and it is independent of the direction of the electron

(left to right or right to left).



Tunnel diode

The positive sign of the current is due to

the fact that electrons carry a negative charge and flow in the negative Xx-
direction (Figure 10.2). The current due to the electron flow from the N-
type conduction band into the P-type valence band is equal to:

Iy—sc=-4 fFv(E) ny(E) Ty [1 - Fe(E)] ne(E) dE (10.1.2)

The total current is obtained by adding 10.1.1 and 10.1.2:

It= Iooy +lyse =4 [T [Fe(E) - Fo(E)] ny(E) no(E) dE. (10.1.3)
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Figure 10.2: Energy band diagram for different increasing forward
bias values. A: Zero applied bias; B: Maximum tunneling current; C:
Tunneling current has vanished. The shaded areas represent states
filled by electrons. [3] Vj is the built-in junction potential and Vj is the
external applied voltage.



Tunnel diode

Calculating the tunnel current is relatively complex. We will only describe
qualitatively what happens using the energy band diagrams of Figure 10.2.

A: Let us start with a zero applied bias. In that case F(E) and F.(E) are equal
because the Fermi level, Ef, is unique, and the tunneling current is equal to
zero, according to Equation 10.1.3 - Figure 10.3.A.

B: If a forward bias, Vg, is applied the quasi-Fermi level and the energy bands in
the N-type region move up with respect to the P-type region. As a result there
are empty states in the P-side valence band which have the same energy as
occupied states in the N-side conduction band. This condition allows for a
tunneling current Jo—y to take place. This current increases with increased
applied bias, Vg, until a maximum is reached. The maximum current occurs
when the number of states in the N-conduction band having the same energy as
empty states in the P-valence band is maximum (Figure 10.3.B).

C: If the applied bias, ¥,, is further increased the number of empty valence states
having the same energy as occupied conduction states decreases until the
tunneling current eventually vanishes. A "valley” point of the I-V characteristics
is reached when tunneling ceases (Figure 10.3.0).

D: In addition to the band-to-band tunneling current a "regular” PN junction current
flows through the diode. As the forward bias is increased the current will
increase again, as in a regular PN junction diode (Figure 10.3.D). In the part of
the curve between the peak and the valley the tunnel diode has a negative
resistance characteristics (R = dV/dI < 0).



Tunnel diode
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Figure 10.3: Energy band diagram I-V characteristics of a tunnel
diode; A: V,=0; B: peak tunneling current; C: valley current where
tunneling ceases; D: "regular" PN junction diffusion current.



Tunnel diode

The tunnel diode is associated with the quantum tunneling phenomena.” The tunneling time across the device is
very short, permitting its use well into the millimeter-wave region. Because of its mature technology. the tunnel
diode is used in special low-power microwave applications, such as local oscillators and frequency-locking circuits.

A tunnel diode consists of a simple p—# junction in which both the p- and n-sides are degenerate (i.e., very
heavily doped with impurities). Figure 1 shows a typical static current-voltage characteristic of a tunnel diode
under four different bias conditions. The /-7 characteristic is the result of two current components: tunneling
current and thermal current.

When no voltage is applied to the diode, it is in thermal equilibrium (V"= 0). Because of the high dopings, the
depletion region is very narrow and the tunneling distance d is quite small (5-10 nm). The dopings also cause the
Fermi levels to be located within the allowed bands. The amount of degeneracy. ¢V, and ¢V, shown at the far left
of Fig. 1, is typically 50-200 meV.

When a forward bias is applied, there exists a band of energy states that is occupied on the n side and a
corresponding band of energy states that is available and unoccupied on the p side. The electrons can tunnel from
the n-side to the p-side. When the applied bias equals approximately (7, + V,)/3, the tunneling current reaches its
peak value /,and the corresponding voltage is called the peak voltage Vp. When the forward voltage is further
increased, there are fewer available unoccupied states on the p-side (V, < V' < V,, where V,, is the valley voltage)
and the current decreases. Eventually, the band is “uncrossed,” and at this point the tunneling current can no
longer flow. With still further voltage increase, the normal thermal current will flow (for V> V).

From this discussion we expect that in the forward direction the tunneling current increases from zero to a
peak current /,as the voltage increases. With a further increase in voltage, the current then decreases to zero when
V=1V, +V, where Vis the applied forward voltage. The decreasing portion after the peak current in Fig. I is
the negative differential resistance region. The values of the peak current /, and the valley current /, determine

the magnitude of the negative resistance. For this reason their ratio 7./, is used as a figure of merit for the tunnel
diode.



Tunnel diode

An empirical form for the I-V characteristics is given by

Y L ¥ qv.
I IP(V,, ]exp(l Vp]+ loexp( e } (1)

where the first term is the tunnel current and I, and V, are the peak current and peak voltage, respectively, as
shown in Fig. 1. The second term is the normal thermal current. The negative differential resistance can be
obtained from the first term in Eq. 1:

&) i et-2)]

Figure 2 shows a comparison of the typical current-voltage characteristics of Ge, GaSb, and GaAs tunnel
diodes at room temperature. The current ratios of I,/I, are 8:1 for Ge and 12:1 for GaSb and GaAs. Because of
its smaller effective mass (0.042 m,) and small bandgap (0.72 eV), the GaSb tunnel diode has the largest negative
resistance of the three devices.
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Iig. | Static current-voltage characteristics of a typical tunnel diode. [, and V. are the peak current and peak voltage,
respectively. I, and V, are the valley current and valley voltage, respectively. The upper figures show the band diagrams
of the device at different bias voltages.



Tunnel diode
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Fig. 2 Typical current-voltage characteristics of Ge, GaSh, and GaAs tunnel diodes at room temperature.
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[Low-dimensional devices

In a low-dimensional device carriers are no longer moving in a three-
dimensional crystal, but they are confined within a two-, one- or zero-
dimensional space. This is realized by fabricating devices where carriers
are confined within a thin crystal, such as a quantum wire, or in a low-
dimensional potential well, such as a quantum-well device.

In the case of a three-dimensional (3D) crystal the density of allowed

states in an energy band is a square root function of the energy, as
demonstrated in Section 1.1.8 and shown in Figure 10.4.
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Figure 10.4: Density of states in the conduction and valence band
near bandgap in a 3D semiconductor.
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Figure 10.5: Density of states in zero- (0D), one- (1D), two-
(2D) and three-dimensional (3D) crystals. [4]



[Low-dimensional devices

In the case of low-dimensional structures the energy bands, and in
particular the distribution of permitted states, is quite different from that

of a 3D crystal (Figure 10.5). In a zero-dimensional (OD) crystal (also
called "quantum dot") the permitted energy levels are discrete. In a one-
dimensional (1D) crystal (also called "quantum wire") they are basically
also discrete, but tend to spread out between the "quantized" levels. In a
two-dimensional (2D) crystal the density of states is a staircase function
of the energy. Figure 10.6 shows the different geometries (3, 2, 1 and 0-D
samples) which correspond to the densities of stated in Figure 10.5.

Figure 10.6: Geometry of 3D, 2D, ID and 0D samples. x, y, and z
represent spatial directions and a, b, and c represent small
dimensions in the x, y, and z direction, respectively. [5,6,7]



Low-dimensional devices. Energy bands

The energy band calculations are based on the time-independent

Schrodinger equation:
o V2¥(x,y,z) + V(x.y,z) ¥(xy.z) = E ¥(x.y,2) (10.2.1)
which can be re-written, if r = (x,y,2):
- % V2¥(r) + V(r) ¥(r) =E ¥(r) (10.2.2)

We have solved this equation in Section 1.1.3 using the Kronig-Penney
model. In the case of a three-dimensional crystal we have seen that near
the bottom of the conduction band the energy of the electron as a
function of the k-vector is parabolic, and behaves approximately as a free
electron. In that case the periodic potential variation in the crystal can be
neglected and one obtains:

7 2
'EV Y(r) = E ¥Y(r)

The solution to the latter equation is ¥(r) = A exp(jkr), from which the
energy can be found:

h2k? w2k

m Y(r) =E ¥(r) = m =Ex (10.2.3)

The k-vectors for a 3D sample can be found by imposing the Born-von
Karman boundary conditions (Expression 1.1.13): ¥(x,y,z) =
Y(x+NL,y,z), ¥(x,y,z) = ¥(x,y+NL,z) and ¥(x,y,z) = ¥(x,y,z+NL) where L
is the size (length) of the crystal unit cell, and N is the number of such
cells in each direction of space. If the crystal has a cubic lattice and has a
cubic shape, each dimension of the crystal is equal to NL and one obtains:

kxﬁnx, ky =N ky =NL "z (10.2.4)

The unit volume in k-space corresponding to each permitted k value is:
3D unit vol = 2_1:3_&53_ 10.2.5
umvoume-—(NL T (10.2.5)

where Vis the crystal volume.



Low-dimensional devices. Energy bands

Using equation (1.1.31) we obtain the values of the permitted wave
number:

2B (1=0£1,42,43,.., H(N-1)/2, +N/2)

where N is the number of crystal cells (about 1022 per cubic centimeter).
The number of permitted k values is, therefore, very large, and one can
consider that k does not vary in a discrete manner, but in a continuous
way. Finally the permitted energy levels in a three-dimensional crystal are
given by:

B o [ (Y (Y] 02

If we now reduce the size of crystal in the in the z-direction to a very
small value, ¢, we obtain a two-dimensional crystal (Figure 10.6). The
wave functions in the z-direction are confined within an infinite potential
well having a width, ¢, which is equal to the sample thickness. In the z-
direction the wave function is finite inside the crystal and it is equal to
zero outside it. Using the technique of separation of variables the wave
function can be written as the product of two wave functions:

Y(x,v.z) = A exp(jkr) Po(z) (10.2.7)

with r = (x,y). In the z-direction the electron behaves like a "particle in a
box" in an infinite potential well of width ¢. From Section 1.1.1.2 we
know that the equation to be solved is:
2 20
- '2';—72'2— =E D.(z) (10.2.8)
and that its solution is:
De(z) = A exp(jkz) + B exp(-jkz) (10.2.9)



Low-dimensional devices. Energy bands

Using the boundary conditions of vanishing wave function at the sides of
the crystal @.(0) = 0 and @.(c) = 0 we obtain:

P(z) =C sir{nzzz)
with n; =1, 2, 3,... (10.2.10)

The energy values in the z-direction can then be extracted:

kzd(Csm( ¢ )) nn,z 7 (ang)°
s . f =222 M S ol
s —EzCsm( : ) =>Ez-2m( ; ) (10.2.11)

The permitted energy levels (eigenvalues) for the electrons in the crystal
can be obtained by summing the energy levels in the z-direction and the
energy levels for r = (x,y):

# 2en2 (2am)\° nng\2
B o () () +(%)
which can also be written:

# 2ane\2 (2 2
Il X\ (27ny }

2
threfEc=2—m' (n—:l) . The volume of the crystal is V=c(NL)?. The 2D

unit volume in k-space corresponding to each permitted k value in the
sample is:

(10.2.13)

: (22 _4nlc
2D unit volume = (NL) 7



Low-dimensional devices. Energy bands

The permitted energy values are obtained by adding the energy levels
which are a function of ky and ky and a series of discrete energy levels
produced by the wave function confinement in the z-direction. For each
discrete energy level resulting from the confinement, Ec(nz), there exists
a 2D energy band corresponding to the possible ky and ky values. Such an

energy band is called an energy subband (Figure 10.7). It is worth noting
that the minimum energy of the electron, which was equal to zero in the

three-dimensional case (when nx=ny=nz=0 in (10.2.6)) is now equal to:

;% (f)zi 0 (for ny=1).

A ny=1landnz=2 B

or
=2andn; =1

Ny
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Figure 10.7: Energy vs. wave vector or wave number in a (A) two-
dimensional and (B) one-dimensional semiconductor. The width and
height of the 1D crystal are taken equal (b=c). Two subbands are shown
for each sample.



Low-dimensional devices. Energy bands

In the case of a one-dimensional crystal the dimensions in both the y and
z directions of the sample are very small as shown in Figure 10.7. The
width of the crystal is noted "b" and its height is noted "c¢". The wave
functions are now confined in both the y and z directions. Using the
technique of separation of variables the wave function can be written as
the product of two wave functions:

Y(x.y.z) = A exp(jkx) Ppe(v.z) (10.2.14)

The wave function in the directions of confinement, @p.(y,z),
corresponds to that of a particle in two-dimensional infinite potential of
width "b" and height "¢". The wave function can be found using the
Schrodinger equation adapted to this particular geometry:

7 2Py (v,2) dzdﬁbfyz)
Zm( d; dzcz ) E ®pe(y.2) (10.2.15)

which has the solution:
Dpe(y,z) = Pp(y) Pcl(z)
Pp(y) = A exp(jky) + B exp(-jky)
D.(z) = C exp(jkz) + D exp(-jkz) (10.2.16)

Using the boundary conditions @p(0) = 0, Pc(0) = 0, Pp(b) = 0 and P.(c)
= (), one obtains:

c

Dp(y) = Fsin(lz%yz) and @ufz) = G sin(’"”z)

withny,=1,2,3,.. and n;=1,2, 3,... (10.2.17)



Low-dimensional devices. Energy bands

The permitted energy levels can then be found:

22 dZ(F sin(g%z)) -5, Fsi n(ﬂéy‘z) e ﬁ (@1)2

“om dy? Y~ 2m\ b
2 . (Tmngz
#2 d (Gsm( = )) 52 2
- , [ RIzZ = (%%
S %2 -—Estm( = ) =>Ez—2m( 2 ) (10.2.18)

The permitted energy levels for the electrons in the crystal can therefore
be obtained by summing the energy levels in the x, y and z directions:

o= 7 [0+ () + (2]

# T 2rn\2
or: Ebck = Ebc + 5, [( NL") ] (10.2.19)
# 2
where Epe = m [(ﬂ’l} +(Mz)z] The 1D unit volume in k-space
m b ¢
corresponding to each permitted k value is:
2n _2nbc

1D unit volume = NS v (10.2.20)



Low-dimensional devices. Energy bands

The permitted energy values are thus obtained by adding the energy levels
which are a function of kx (which vary in a continuous manner) and a
series of discrete energy levels produced by the wave function
confinement in the y and z directions. The discrete energy levels resulting
from the confinement, Ebc(ny,nz), are the minima of energy subbands.
The other energy values in each subband are obtained by adding
Epe(ny,nz) to the energies corresponding to ky values (Figure 10.7.B). It is
worth noting that the minimum energy of the electron, which was equal
to zero in the three-dimensional case (when ny=ny=n;=0 in Equation

7 (N2 (n
10.2.6) is now equal to '2;((3) *{E) # 0 (for ny = ng = 1).

In the case of a zero-dimensional crystal the dimensions in all x, y and z
directions are very small. The length, width and height of the crystal are
noted "a", "b" and "c". The wave function is now confined in the x, y and
z direction. Using the technique of separation of variables the wave
function can be written as the product of separate wave functions:

Y(xy.z) = Pa(x) Pp(y) Pclz) (10.2.21)

The wave function ¥(x,y,z) can be found by solving the Schrédinger
equation in a three-dimensional potential well:

P d2Wxyz) EW¥ryz) d2¥ay.z)
—( e )=E'l’(x,y,z) (10.2.22)

“2m

which has the solution:
Y(x.y.2) = Pa(x) Pp(y) DPc(z)
Dy(x) = A exp(jkx) + B exp(-jkx)
Dp(y) = C exp(jky) + D exp(-jky)
P.(z) = E exp(jkz) + F exp(-jkz) (10.2.23)



Low-dimensional devices. Energy bands

Applying the following boundary conditions @4(0) = 0, @Pp(0) = 0, P.(0)
=0, Qy(a) = 0, Pp(b) = 0 and P.(c) = 0, one obtains:

Pa(x) = G Siﬂ(%) ,Pp(y) =H sin(n—';y'z) and Pp(z) =1 sin(&;ﬁ)

where ny, ny and nz can take on values 1, 2, 3... (10.2.24)

The energy eigenvalues in the different directions are:

4""**) (2]

Py, dz(Gsz MD
“2m dx?
2el) e
A 1cid 2E
I I
Y, - . [TiNzZ Ol 7.1+
S 22 —Ezlsm( 2 ) =}Ez—2m( % ) (10.2.25)

where the constants G, H and [ have been determined by applying the

boundary conditions. The electron energy values are obtained by summing
the three latter equations, which yields:

Foiuis ;,2" [(’"’")2 + (%2)2 + (EC”—’)Z] (10.2.26)

The permitted energy levels are thus a succession of discrete levels
produced by the confinement in the three-dimensional potential well. The
minimum energy value (when nx =ny =nz = 1) is equal to

=(GREREI



Low-dimensional devices. Electron densities of states

In a three-dimensional crystal the volume of a lattice unit cell is equal to
L3 and the volume V of the crystal is equal to ¥ = (NL)3. The unit volume

corresponding to each permitted state (i.e. to each k value) is equal to

3 3
(21@ =8—;t/-(Rclationship 10.2.5).

Using a similar approach to that of Section 1.1.8 we will now consider a
sphere in k-space which contains all the wave vectors corresponding to
the electrons having an energy below a given maximum value. To each
wave vector, k<kmax, correspond two electrons by virtue of the Pauli
exclusion principle. The number of electrons is thus given by:

4n 3 vV
n =2(-3—k ,,)@ (10.2.27)
3
and, in a unit volume (V=1): n=2 (43—7: kfmu Zl_n) (10.2.28)

The latter relationship enables us to link k, 4y to the electron
concentration: kmax = (3n2n)1/3.

The density of states is defined by p = dn/dE. We will use the symbol p
for the density of states instead of n(E), which was used in Equation
1.1.48 to avoid confusion between the number of electrons, n, and the
density of states.

Using the following relationships we can relate the density of states, p, to
energy values:

dn _d[_ (4= 3\ 1\3]_ ., 42k?
dk“ﬂ{z(_szzn)]’z(z:zﬂ

2] SN [/
E=E= m =>k=(k2 Ek)
-1/2
dk  2m 172 Ek
dE—(}i?) = (10.2.29)
Finally we obtain the density of states as a function of E:
dn _dndk _ 1 2m? 12
p=ﬁ=:ﬁ";§=5;(ﬂ) E, (10.2.30)

Thus, the density of states near a band extremum, such as the minimum
of the conduction band, varies as the square root of the energy.



Low-dimensional devices. Electron densities of states

In a two-dimensional crystal confined in the z-direction the 2D volume of

a lattice unit cell is equal to L2 and the volume of the crystal is equal to ¥

= ¢(NL)2. The unit volume corresponding to each permitted state (i.e. to
2n 4n2

each k value) is equal to (ﬁ) = —— (Relationship 10.2.13). Using a

similar approach to that of Section 1.1.7 we now have to consider a circle
in k-space which contains all the wave vectors corresponding to the
electrons having an energy below a given maximum value. To each wave
vector, k<kmax, correspond two electrons by virtue of the Pauli exclusion

principle. The number of clectrons is thus given by:

"_2( )42c

2
and, in a unit volume (V=1): n=2 (7: kmax)(zl_n) f (10.2.31)

The latter relationship enables us to link kmgx to the electron

concentration: Kkmgy = (2nnc)!/2. The density of states in a subband is
definedby: p = dn/dE Thus we find:

-4 (T
d (" )(Zn)c nC

P ag Pk gk m
EmEck=ket 3m " m —dE Nk

P=4ETdkdE™ e (19232)



Low-dimensional devices. Electron densities of states

Thus, the density of states near a subband extremum, such as the
minimum of the conduction band, is constant and independent of the
energy. However, one has to take into account that there are several

subbands. The total number of electrons is obtained by adding the number

of electrons in the different subbands:

n(E) = [pdE = -i— ﬁ%’,’—nzow-sc) (10.2.33)
Hom &

where the function @ is defined as:

6(E-E;) = 0if E < E. and 6(E-E.) = E-E, if E > E,.

In a one-dimensional crystal the 1D volume of a lattice unit cell is equal
to L and the volume of the crystal is equal to V = b ¢ NL. The unit volume

corresponding to each permitted state (i.e. to each k value) is equal to (]gv‘%)

zn’fc(Relationship 10.2.20). Using a similar approach to that of

Section 1.1.8 we now have to consider a line segment in k-space which
contains all the wave vectors corresponding to the electrons having an
energy below a given maximum value. The length of this segment is
2kmax. To each wave vector, k<kmqx, correspond two electrons by virtue
of the Pauli exclusion principle. The number of electrons is thus given by:

V
" =4 kyax 2r b c
Kmax 1
and, in a unit volume (V=1): n=_2 "2 bo (10.2.34)
The latter relationship enables us to link £, 4x to the electron

. nnbc
concentration: Akpygx = 5 -



Low-dimensional devices. Electron densities of states

The density of states in a subband is defined by: p = dn/dE. Thus we find:
dn_ d[2k _1_] 3

dk diq m bel| ™

' 72k? om 12
Using E = Epck = Epe + 2 = k= (”&7 (Epck - Ebc))

-12
172 (Epck - Epe)

we find 4&"(2;’;‘) 5
and thus:
_dn _dndk 1 172 1
P=SE= R IE= (5’2") (Ebek - Ebe) (10.2.35)

where Epq is a continuous function of k in the x direction and a discrete
function in the y and z directions.

Thus, the density of states near a subband extremum, such as the
minimum of the conduction band, now varies as an inverse square root
function of the energy as a function of k. Again, one has to take into
account that there are several subbands corresponding to the
discretization in the y and z directions. The total number of electrons is

obtained by adding the number of electrons in the different subbands:
172
/

n(E) = [pdE = (%) bczo(Ebck Epe) (Eock- b~ (10.2.36)

where the function @ is defined as:
OEnck - Ebe) = 01f Eppt - Epe < 0 and 8(Epck - Epe) = 11f (Epek - Epe) 2 0.



Low-dimensional devices. Electron densities of states

The density of states for a 1D and 2D and 3D semiconductor sample with
specified dimensions is shown in Figures 10.8 to 10.11.
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Figure 10.8: Density of states in the conduction band, as a function
of energy, in silicon 1D, 2D, and 3D crystals. In the 2D sample the
crystal height, ¢, i1s 20 nm, and in the 1D crystal the height, c, and the
width, b, of the sample, are both equal to 20 nm. '



Low-dimensional devices. Electron densities of states
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Figure 10.9: Density of states in the conduction band, as a function
of cnergy, in silicon 1D, 2D, and 3D crystals. In the 2D sample the
crystal height, ¢, is 40 nm, and in the 1D crystal the height, ¢, and the
width, b, of the sample, are both equal to 40 nm.
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Figure 10.10: Density of states in the conduction band, as a
function of energy, in silicon 1D, 2D, and 3D crystals. In the 2D
sample the crystal height, ¢, is 100 nm, and in the 1D crystal the
height, ¢, and the width, b, of the sample, are both equal to 100
nm. The dimensions b and ¢ are now large enough for both the 1D
and 2D distributions to "follow" the 3D curve.



Low-dimensional devices. Electron densities of states
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Figure 10.11: Density of states in the conduction band, as a
function of energy, in silicon 1D, 2D, and 3D crystals. In the 2D
sample the crystal height, ¢, is 40 nm, and in the 1D crystal the
height, ¢, and the width, b, of the sample, are equal to 40 and 400
nm, respectively. The width, b, is now large enough for the 1D
distribution to "follow" the 2D curve. ’ '



Quantum dots. Electron densities of states

Neglecting the periodic potential existing in solids, we can imagine a zero dimen-
sional solid in which electron is confined in a three dimensional potential box with
extremely small (<100 nm) length, breadth and height as a OD solid. This will have
the discrete energy levels as discussed above with density of states given as

D(E):%:ZS(E-ei (1.45)

where ¢; are discrete energy levels and 8 is Dirac function. The density of states as
a function of energy would appear as illustrated in Fig. 1.9.

Fig. 1.9 Density of states for -
a particle in a zero
dimensional solid
2
&
L
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Quantum dot. What 1s 1t?

The presence of a discrete energy spectrum distin-
guishes quantum dots from all other solid-state systems
and has caused them to be called “artificial atoms.” How-
ever, the atom—quantum dot analogy should not be carried
too far: Unlike electrons in an isolated atom, carriers in
semiconductor quantum dots—which contain from a few
thousand to tens of thousands of atoms arranged in a
nearly defect-free three-dimensional crystal lattice—
interact strongly with lattice vibrations and could be
strongly influenced by defect, surface, or interface states.

One of the most important consequences of strong
carrier confinement in quantum dots is the prominent
role of many-particle effects. Coulomb interactions
between carriers control the quantum dot charging and

carrier recombination dynamics.

Self-assembled quantum dots have smaller sizes and
stronger confinement potentials than lithographically
defined quantum dots and therefore permit the study of dif-
ferent quantization regimes. Unlike lithographically
defined nanostructures, self-assembled quantum dots can
be easily fabricated and readily analyzed using optical
spectroscopy and measurements of their transport proper-
ties. Based on experimental results, it seems likely that
self-assembled quantum dots will play a key role in the
emerging fields of single-particle electronics and photonics.



Quantum dots. Growth

Self Assembly in Inorganic Materials

It is possible to spontaneously create the quantum dots for example of germanium
(Ge) on silicon (S1) or indium arsenide (InAs) on gallium aresenide (GaAs). The
origin of self assembly is strain induced. Germanium and silicon have only 4 %
lattice mismatch. Therefore Ge can be deposited epitaxially on Si single crystal
upto 3—4 monolayers. Although grown (hetero)epitaxially, the layers of deposited
Ge are highly strained (coherently i.e. without any defects or dislocations). When
further deposition takes place, the lattice strain caused by depositing Ge on Si with
different lattice constants cannot be accommodated.

This results in spontaneous formation of nanosized islands or quantum dots.
However the temperature of the substrate has to be =350 °C during deposition
or post-deposition annealing is required. Figure 6.6 schematically illustrates the
growth mechanism as well as an electron microscopy image of germanium islands
on Si (111) surface. The size of the islands depends upon the growth temperature as
well as the substrate plane on which it grows.
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Coherently Strained 2D film

N

1

Strain induced island formation

Growth mechanism of Ge on Si and photograph showing island formation (Field of view 10 jtm)



Quantum dots. Growth

Growing quantum dots, rings, and lattices

Fabrication of self-assembled quantum dots begins with
some form of atomic deposition onto the surface of a semi-
conductor substrate, where the deposited material is cho-
sen to have a smaller bandgap than the substrate. During
the deposition process, epitaxial islands spontaneously
form for energetic reasons on the crystal surface. These
islands are then made into quantum dots by covering
them with another semiconductor layer having a larger
bandgap than the islands.

In practice, in-situ growth techniques such as molec-
ular beam epitaxy or metalorganic chemical-vapor deposi-
tion are used to obtain the requisite ultraclean conditions
and exquisite control of deposition parameters. With
these techniques, a flux of atoms (for example, gallium,
indium, or arsenic) is sent onto an ultraclean gallium
arsenide surface held at high temperature. After diffusing
across the clean reconstructed surface, the atoms arrange
themselves, starting from step edges, to form a continuous
epitaxial layer. The surface, interfacial, and elastic ener-

gies of the epitaxial film change dur-
ing the film deposition process and
the atomic arrangement on the sur-
face develops so as to minimize the
sum of these energies. The elastic
strain energy of the film grows qua-
dratically with the film thickness, and
if the epitaxial film material has a lat-
tice parameter even a few percent dif-
ferent from that of the substrate,
nanometer-sized islands can form on
the surface to minimize the total ener-
gy.* This film relaxation is elastic, so
no defects are introduced in the island
formation process.



Quantum dots. Growth

FIGURE 1. ATOMIC FORCE MICROGRAPH images (bottom) of islands epitaxially
grown on a gallium arsenide-(001) substrate, and schematics (top) of the profile of the
islands showing their shape and distribution. The islands are transformed into quan-
tum dots or rings by covering them with a GaAs epitaxial film (represented by the
light shading on the top drawings). The lateral size of each AFM image is 1 um, and
the quantum dot density is between 5 X 10 cm™? and 2 X 10" em 2 (a) Indium
arsenide islands are randomly nucleated on the surface. The islands are shaped like
truncated pyramids with a base of 30-40 nm and a height of 4-8 nm. (b) In Ga,_As
ring-shaped islands are randomly distnibuted on the substrate. The depressed center
of the ring can be seen as a small black dot in the image. (c) InAs islands on a GaAs
substrate form a two-dimensional lattice with a unit cell (indicated in white) contain-
ing three to four islands per lattice point. The lattice is formed by patterning the sub-
strate before nucleation with a periodic mesa pattern incorporating localized stress
centers under the mesas. Nucleation takes place preferentially on top of the mesas in
order to minimize the film energy on the surface and relax local elastic stresses. The
number of islands in the basis, the lattice period, and the orientation of the two-
dimensional lattice of islands can all be adjusted by varying the InAs flux and the
size, orientation, and period of the mesa lattice.



Quantum dots. Growth

Fig. 2.3. Etched quantum dots: (a) diameter of 200 nm, GaAs/AlGaAs well, elec-
tron scanning microscope picture [125]; (b) diameter of 30 nm, InGaAs/InP well,
Fig. 2.1a—f. Process of transmission electron microscope picture [128]

quantum dot etching [117]



Quantum dots. Growth

0.5 iim

Fig. 2.4. Quantum dot on the intersection of electrodes; four internal electrodes (111) B Ga As
localize the electrons, and four external ones serve as contacts for the electrons Fig. 2.7. Quantum dots created on the surface of GaAs in selective MOCVD growth
tunneling to and from the dot [117]

(scanning electron microscope pictures); width of the electron localization area at
the top of the pyramid is about 100 nm [45]



Quantum-dot field-effect device

a Far-infrared radiation *
z FIGURE 2. QUANTUM-DOT FIELD-EFFECT DEVICE used to probe the
electronic states of self-assembled quantum dots and quantum rings.
(a) The device consists of a capacitor-like structure between two paral-
lel conducting plates; the self-assembled islands are embedded, as indi-
cated, in an internal layer. The lower plate (back contact) is part of the
own semiconductor structure and consists of a highly (silicon) doped
GaAs layer. The top plate is a thin, transparent, metal layer evaporat-
ed on top of the sample. The field inside the capacitor structure, and
thus the energetic alignment between the islands and the back contact,
can be tuned by an external voltage V, applied between the back con-
tact and the top gate. Because the back contact is located only some
tens of nanometers away from the islands, electrons can readily tunnel
back and forth between the two if an electronic level in the islands is
aligned with the chemical potential of the back contact. When a small
AC voltage V,1s added to V, the resulting shift of charge back and
forth between the back contact and the dots will manifest itself by an
increased capacitive signal in the external circuit, which can be used for
capacitance spectroscopy. (b) A schematic conduction band diagram
shows that electrons enter the quantum dots by tunneling from the
‘ back gate through the GaAs barrier (the triangular section above the

Gate electrode

Blocking

layer — &

InAs
islands

Back ——
contact

Far-infrared radiation

double-headed green arrow). The allowed dipole transitions of the
Back contact many-particle system are measured using infrared spectroscopy, as
indicated: The lower energy level is populated from the back contact
oo using an applied bias (green arrows), then an incident infrared photon
N S induces a transition between two quantum dot energy levels (red
z  arrow), and the transition energy is measured by infrared absorption
Quantum dot spectroscopy.

(=2




Capacitance spectroscopy using quantum dots

FIGURE 3. CAPACITANCE SPECTROSCOPY reveals quantum-
dot electron occupancy and ground-state energies in the field-
effect device shown in figure 2. Above, measured capacitance is
plotted as a function of bias voltage V.. Numbered arrows indi-
cate the peaks that occur where an additional electron enters
the dot. Below, the schematic band diagrams show the changes
in the effective confining potential (black curve) and in the
lowest energy levels (connected blue circles, filled in for occu-
pied levels) as electrons are added to the quantum dot. The
Fermi level ., of the back gate, which is proportional to the
bias voltage, is at the top of the dark shading in the diagrams.
Although the lowest energy state is doubly spin degenerate,
electron-electron interaction makes it harder to load the sec-
ond electron into a quantum dot than the first. The energy lev-
els when the first electron enters the dot are shown at bottom
. : : | left; Coulomb interaction raises the energy of the two-electron
) 0.8 0.4 0 state by almost 20 meV compared to the one-electron state (the
BIAS VOLTAGE (V,) so-called Coulomb blockade), as shown at bottom center. To
& load the second electron the back gate potential must be raised
oa gate p
(bottom right). Adding a third electron would require both the

5 { Coulomb energy and the quantization energy of about 50
50 e\t 1 & meV, so there is a gap in voltage between the second and the
5 ) —F it third peak in the charging characteristic (top). To convert
E L

CAPACITANCE (arbitrary units)

20 meV from bias voltages to energies, a scaling factor (about 7 for the
present structure) is used, which can be derived from a simple
X,y evaluation of the capacitative energy at the quantum dot layer.



Photon correlations. The quantum nature of light

Since the pioneering experiments by Robert Hanbury-
Brown and Richard Q. Twiss, photon correlation meas-
urements have become a major tool in quantum optics and
the spectroscopy of single-quantum systems." Such experi-
ments measure the likelihood that, given an initial photon
detection event at ime ¢, a second photon will be detected at
time ¢ + 7. The experimental setup consists of a 50/50 beam-
splitter and two single-photon counting avalanche photodi-
odes (SPADs), each of which generates a voltage pulse upon
detection of a single photon. The pulses from the two SPADs
are used to start and stop a time-to-amplitude converter,
which translates the time delay between the start and stop
pulses into a voltage amplitude. The result is a count of the
number of pairs of photons 7(7) that have an arnival-time sep-
aration of 7. In the limit where the reciprocal of the average
counting rate is much longer than the monitored time range,
n(7) is proportional to the normalized intensity correlation
function g?(7)."

For a coherent light source, such as a single-mode laser,
g%(7) = 1. Physically, this means that detection of a photon at
time 7 = O gives us no information about the succeeding pho-
ton-detection event; that is, the photons that make up a
coherent light beam are completely uncorrelated. If, on the
other hand, a light source satisfies either g?(0) < g®(7) or
g%(0) < 1, this indicates that two photons are unlikely to
appear simultaneously at the detectors. The first observation
(in 1977) of this “photon antibunching” in fluorescence from
a single atom has been generally regarded as the first proof of
the quantum nature of light, since these correlations cannot
be explained without quantizing Maxwell’s equations."

Fluorescence from a single anharmonic quantum emitter
has the property that g2(0) = 0. This strong quantum corre-
lation among photons is easily washed away with an increas-
ing number of emitters. We can therefore consider strong
photon antibunching (g®(0) < 0.5) as direct evidence that the
source of the radiation field is a single-emitter quantum sys-

tem. In contrast, observation of sharp emission peaks in pho-
toluminescence spectra is not sufficient to rule out the pres-
ence of two or more identical emitters.

Photon correlation measurements have recently been car-
ried out in both colloidal and self-assembled quantum dots.”
The figure shows the measured intensity correlation function
of the fluorescence from the fundamental exciton line of a
single self-assembled quantum dot. The dip at zero time delay
is direct evidence that the fluorescence comes from a single
anharmonic quantum emitter. The time scale on which the
correlation function changes from g?(0) = 0 to g?(7) = 1 is
ultimately determined by the single-exciton recombination
time. Thus, in addition to confirming the prior photolumi-
nescence-based identification of single quantum-dot exciton
lines, these measurements are also useful as a spectroscopic
tool for measuring quantum-dot recombination times with-
out requiring mode-locked laser sources for excitation.
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The quantum nature of light revealed by quantum dots

Fig. 1. The microdisk structure, which consists
of a 5-um-diameter disk and a 0.5-pm post.
The GaAs disk area that supports high-quality
factor WGMs is 200 nm thick and contains InAs
quantum dots.

2
-
8 %% o 30
£ Time 7 (ns)
M
1.32 1.34
Energy (eV)

Fig. 2. Photoluminescence spectrum of a single
InAs quantum dot embedded in a 5-pm-diam-
eter microdisk. Contributions from the exci-
tonic ground state transition (1X), higher ex-
cited states [for example, biexciton (2X)], and a
WGM (M) are visible. (Inset) Measured normal-
ized cw correlation function g(®(r) of the single
quantum dot 1X transition. The time bin is 195
ps and the excitation power is 160 W/cm?.
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The quantum nature of light revealed by quantum dots

Ti: sapphire laser

Exciton transition

0 20 40 60 80
DELAY TIME 7 (ns)

FIGURE 6. INTENSITY CORRELATION FUNCTION for a quan-
tum-dot single-photon source based on pulsed laser excitation
of a single quantum dot embedded in a microdisk. Plotted are
the correlation function for the titanium-sapphire excitation
laser (top) and quantum-dot ground-state emission under exci-
tation conditions (bottom), as a function of the time delay 7
between the photon arrival times (see the box on page 51).
The absence of a peak at 7 = 0 in the emission correlation
function shows that none of the pulses contains more than
one photon. (Adapted from ref. 15.)




The quantum-dot memory device

FIGURE 7. A QUANTUM-DOT MEMORY DEVICE based on con-
trolled charge storage. Two strain-coupled quantum-dot layers
are fabricated within a field-effect transistor with an n* gallium
arsenide-type doped back gate and a gold semitransparent
Schottky front gate. The quantum-dot layers (light green) are
separated by a thin aluminum arsenide layer (gray) that per-
mits very fast (about 0.5 ps) electron transfer. (a) For the write
cycle, a photon-induced exciton is dissociated by the internal
field into an electron and hole pair, which are stored, respec-
tively, in an indium arsenide quantum dot and in a nearby
strain-induced GaAs quantum dot. (b) The information is read
optically by applying a positive voltage pulse to the front
Schottky contact, which drives the hole from the strain-
induced quantum dot into the quantum dot containing the
electron. The exciton is regenerated and recombines to emit a
photon, which is then observed using standard photon-detec-
tion techniques.




Light emission from quantum dots

( a) hv ~ Eg
N
Excitonic recombination
b hv < Eg

( ) Trapping at surface

followed by recombination
0

hv @ 1.5 um

(c)
Energy transfer to Er

IU:> followed by recombination

Fig. 2 Possible mechanisms that can lead to radiative light emission in Si QDs.

(a) Recombination occurs between an electron in the conduction band and a hole in the
valence band. The emitted photon has an energy equal to the band gap energy.

(b) Recombination involves an electron, a hole, or both electron and hole trapped in a
surface state. In this case, the emitted photon energy is less than the band gap energy
since the surface levels lie within the band gap. (c) The exciton generated within the
nanocrystal is quickly captured by Er atoms located in close proximity and photons are
emitted at a wavelength of 1.5 um.



Light emission from quantum dots. Sharp
atomic-like lines due to the exciton etffects
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FIGURE 1. A SINGLE QUANTUM DOT can be selectively excited, detected, or both using high spatial and spectral
resolution. The spectrum on the right shows extremely sharp discrete excitation resonances reminiscent of an
atomic spectrum. These sharp spectral lines arise from single exciton states that differ in their orbital wavefunc-
tions. Substates give rise to fine structure, which usually shows up as a doublet, as shown in the inset. (Adapted



Light emission from quantum dots.
Single-photon sources
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Figure 2. (a) A QD consists of a small, nanoscale island of a lower band gap semiconductor (B) embedded in a higher band gap
semiconductor (A). (b) 1D diagram of the electronic structure of the QD. Incoherent pumping and emission from the exciton state are shown.
(c) The level structure and fine structure splitting present for the biexciton and exciton. (d) Fine structure splitting present in InP/InGaP QD.
Spectrum shown for polarizations at 07, 45° and 90°. The spectrum of InAs/GaAs QD under (¢) above band and ( f) resonant excitation. In

(f), the excitation laser is tuned to the higher order transition inside a QD, while in (¢), the excitation laser frequency is above the GaAs
band gap. (d) reproduced with permission from [69]. Copyright 2012 American Institute of Physics. (e¢)—( f) reproduced from [70].



Light emission from quantum dots.
Single-photon sources. Hanbury Brown and
Twiss effect
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Figure 5. (a) HBT measurement setup. (b) Pulsed g'*(7) measurement. The missing central peak indicates single-photon emission. Inset
shows missing signal at T = 0. Reproduced with permission from [162]. Copyright 2003 American Institute of Physics.



Light emission from quantum dots. Single-photon sources

A powerful idea in quantum dot physics is to excite a
quantum dot with a laser pulse intense enough that the
probability of the dot capturing at least one exciton is very
close to one [52]. A highly excited quantum dot decays by
emitting a series of photons, which have different energies
because of the renormalization through the Coulomb
interaction. This enables the final photon to be selected
by spectral filtering, and this photon can be used for
communication.

This idea has now been explored experimentally and, at
least at low temperatures. photons on demand have been
generated from individual quantum dots [53. 54]. This is
often called non-classical light because the temporal
ordering of the photons is highly dissimilar from classical
light described by Poisson statistics.



The quantum-dot infrared photodetector (QDIP)

The success of quantum well structures for IR detection applications has stimulated the
development of QDIPs. In general, QDIPs are similar to QWIPs but with the quantum
wells replaced by quantum dots, which have size confinement in all spatial directions.

Fig. 2 shows the schematic layers of a QWIP and a QDIP. In both cases. the detection
mechanism 1s based on the intraband photoexcitation of electrons from confined states in
the conduction band wells or dots into the continuum. The emitted electrons drift towards
the collector in the electric field provided by the applied bias, and photocurrent is created.
It 1s assumed, that the potential profile at the conduction band edge along the growth
direction for both structure have a similar shape as shown in Fig. 2(b).

d QwWIP QDIP b Injection from

contact

Top contact

Growth — | -—-— i
direction N '[fapplng
. s : ~e Emission
— XN « / xN . Emitter H\
( | - hv
! Barrier \ Barrier Photocurrent
L Well Ly & e Dots
Barrier Barrier

Bottom contact
Under bias Collector

Fig. 2. Schematic layers of QWIP and QDIP (a) and potential profile for both structures under bias (b). For
QDIP, influence of wetting layer is neglected (after Ref. [17]).



The quantum-dot infrared photodetector (QDIP)
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Fig. 3. Schematic diagram of conventional quantum-dot detector structure.
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The quantum-dot infrared photodetector (QDIP)
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Fig. 4. DWELL infrared detector: (a) the operation mechanism, (b) experimentally measured spectral tunability
by varying well width from 55 to 100 A (after Ref. [21]).



The quantum-dot for solar cells. Size-dependent light absorption spectra
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Fig. 5 Absorption spectra of PbSe QDs spanning the range from 3.3 nmto 8.1 nm show strong quantum-confined ¢ exciton shifted absorption. Several discrete transitions
are observable and represent discrete excitonic transitions. Bottom right shows that for PbSe QDsEg varies approximately as 1/r. Top right depicts the increased quantum
confinement that the 7+ exciton experiences as the particle size decreases.



Coulomb blockade 1n quantum dots

Coulomb Blockade

(a)

g
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Figure 4. Potential landscape through a quantum dot. The states in the contacts are filled
up to the electrochemical potentials jtjery and piggh, Which are related by the external voltage
Vsd = (ptleft — feright)/e. The discrete single-particle states in the dot are filled with N electrons
up to ot (N). The addition of one electron to the dot raises jzgo (V) (i.e. the highest solid curve)
to ftdot (N + 1) (i.e. the lowest dashed curve). In (a) this addition is blocked at low temperatures.
In (b) and (c) the addition is allowed since here ptdot (N + 1) is aligned with the reservoir potentials
Hief and fegop by means of the gate voltage. (b) and (¢) show two parts of the sequential tunnelling
process at the same gate voltage. (b) shows the situation with N and (¢) with N + 1 electrons on
the dots.



Coulomb blockade in quantum dots

The electrochemical potential of the dot is defined as pugo(N) = U(N) — U(N — 1).
Electrons can flow from left to right when 4o 18 between the potentials, ptier and fiigne, of the

leads (with eVsg = et — Mright). 1.€. et > Mdot(N) > rignt (figure 4). For small voltages.
Vsa & 0, the Nth Coulomb peak 1s a direct measure of the lowest possible energy state of an
N-electron dot, 1.e. the GS electrochemical potential jtgo(N). From equation (1) we obtain

,Uvdot(N)z(N—No— 1/2)Ec—e(Cg/C)Vg+EN. (2)
The addition energy is given by
Ap(N) = pgot(N + 1) — pgot (N) =U(N +1) —2U(N) +U(N — 1)
= Ec+ Enn — Ey = €°/C + AE, (3)
with Ey being the topmost filled single-particle state for an N electron dot. The related atomic
energies are definedas A = U(N)—U (N+1) forthe electron affinityand / = U(N—1)—U(N)
for the ionization energy [11]. Their relation to the addition energy i1s Au(N) = I — A.
The electrochemical potential is changed linearly by the gate voltage with the
proportionality factor @ = (Cy/C) (equation (2)). The a-factor also relates the peak spacing

in the gate voltage to the addition energy: Au(N) = ea(V,'*! — V,Y) where V¥ and V,}*!
are the gate voltages of the Nth and (N + 1)th Coulomb peaks, respectively.



Electron tunneling via excited states in quantum dots

Figure 11. Schematic energy diagram to illustrate tunnelling via ES. The voltage between the
source and drain contacts, Vg, opens an energy window, eVsg = pieft — Hright. between the
occupied states in the left and empty states in the right electrodes. Electrons in this window can
contribute to the current. (@) In this case eVy, is large enough that tunnelling can occur either via
the GS or one of the two ESs. (b) This alignment of states occurs at a gate voltage corresponding
to the lower edge of an excitation stripe (e.g. figure 13). The alignment shown in (¢) occurs at a
gate voltage corresponding to the upper edge of an excitation stripe.



