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Fixed space-charge distributions

In the following chapters we will only use one relevant space coordinate
between these charges. The relationship between space charge and field is then
given by the one-dimensional Poisson equation

dF 0
—_— = 9 7
da £€0 ( )

Such a field distribution determines the electrostatic potential distribution
for electrons via

dy(z)

da

= _[F(z) - F(z =0)] = — /O o) g, (1.18)
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with

() = /d F(€)de. (1.19)
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and for £ = dj. the corresponding v)(dy) serves as reference point for the
electrostatic potential.



Fixed space-charge distributions

In summary, we have shown that space-charge regions result in field inho-
mogeneities. The importance of such field inhomogeneities lies in their ability
to influence the current through a semiconductor. With the ability to change
space charges by changing a bias, as we will see later, they provide the basis
for designing semiconducting devices.

Since a wide variety of space-charge distributions are found in semicon-
ductors, many of which are of technical interest, we will first enumerate some
of the basic types of these distributions and start with a catalogue of the in-
terrelationships of various given o(x). resulting in corresponding distributions
of electric field F'(x) and electrostatic potential ¥(x).

Because of the common practice to plot the distribution of the band edges
for devices, we will follow this habit throughout the following sections. The
band edge follows the electron potential v, (x) and this relates to the electro-
static potential as

E.(z) = ehp(x) + ¢ = —e(x) + const. (1.20)



Fixed space-charge distributions

In the examples given in this section, the space-charge profiles are arbitrar-
ily introduced as fixed, explicit functions of the independent coordinate (z).
The space charge can be kept constant in an insulator that does not contain
free carriers. Here all charges are assumed to be trapped in now charged lattice
defects.

1.2.1 Sinusoidal Continuous Space-Charge Distribution

A simple sinusoidal space-charge double layer can be described by

i easin [2mx/d] for —d/2<x<d/2 (1.21)
0 elsewhere

with d = d; + dy the width of the space charge layer:; d; and dy are the widths
of the negative and positive regions of the space charge double layer (here.
di1 = dg). The space charge profile is shown in Fig. 1.1a.



Fixed space-charge distributions

The corresponding field distribution is obtained by integration of (1.21),
and assuming F'(z = +00) = 0 as boundary conditions:

—(ead) cos|2x/d : —d S BEA
F(z) = (ead) cos[2ma/d] for d/2 < p<d)2 (1.22)

0 elsewhere:

it is shown in Fig.1.1b, and presents a negative field with a symmetrical
peak; its maximum value lies at the position where the space charge changes
its sign. The maximum field increases with increasing space-charge density ea
and width d.

The corresponding electron energy (band edge) distribution is obtained by
a second integration of 1.21, yielding with an assumed E.(oc) = 0 as boundary
condition:

e?ad? /(4e<o) for r < —d/2
E.(z) = § —€?ad?sin 2wz /d] /(4eeg) for —d/2< z<d/2 (1.23)
0 for o s 2,

that is, a band edge step down of height ead?/(4s¢), as shown in Fig.1.1c.

(1)



Fixed space-charge distributions
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Fig. 1.1. Sinusoidal space charge, and resulting electric field and electron energy

distributions. Computed for a maximum charge density, @ = 10 cm™3,
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Creation of space-charge regions in solids and
corresponding currents

Space-charge regions, which were arbitrarily introduced in Sect. 1.2, occur nor-
mally in solids as a consequence of inhomogeneous doping or of the boundary
conditions at the contact.

Here. carriers can leak out from a region of higher carrier density into a
region of lower carrier density. Since the average electron density in thermal
equilibrium is equal to the density of ionized uncompensated donors in a
homogeneous n-type solid, the leaking out of mobile electrons into an adjacent
region of a lesser donor density must create a positive space charge
0 = G(A’ng == "n..) (2.1)

-

in the more highly doped region where some of the charge-compensating elec-
trons are now missing and a negative space charge

o0=e(Ng —n), (2.2)

in the adjacent, lower doped region, caused by the excess electrons. with an
abrupt flip! of sign of the space charge at the doping boundary between the
two regions,? as shown in Figs. 2.1a. b.



Creation of space-charge regions in solids and
corresponding currents
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Fig. 2.1. Step-like doping distribution in an mn*-junction with higher doping
density at right, and resulting carrier density (a), space charge (b), field (¢), and
band edge (d) distributions shown below



Creation of space-charge regions in solids and corresponding

currents

The exact shape of these distributions, however, is given by the distribution
of the mobile carriers which is caused by carrier diffusion out of the highly
doped region (z > 0). In equilibrium, such diffusion is counterbalanced by
carrier drift in the opposite direction, due to the field induced by the space
charge, which was created by the initial carrier diffusion. Hence, in addition to
the Poisson equation discussed in the previous section, one must now consider
the carrier transport equation?® including drift and diffusion currents, here
for electrons:

n
jn = ep nF +1 k,Tcll., (2.3)
' axr

where n is the electron density and p, , the electron mobility. Equations (1.17).
(1.18), and (2.3) are now the governing set of differential equations that

for convenience we will repeat here in their basic formulation:

In
j"- - eunn’F 55 “nAT% (2‘1)
dF 0 i
[T (2.5)
0
Ayn 7 (2.6)

da



Creation of space-charge regions in solids and corresponding currents

These determine quantitatively the space-charge distribution and conse-
quently the entire electrical behavior of any junction in which only one carrier
is mobile. In this example, it is a simple nn*-junction.?

We will now analyze in more detail the behavior of such an idealized nn™-
junction. which illustrates the main behavior that in a modified form is the
basis for the carrier transport in all other barriers or junctions.

Such junctions have technical relevance as high-low junctions, or nn™-
junctions in many devices. The notation n™ is used to identify a highly doped,
or often degenerate region in which the Fermi-level is close to, or inside the
conduction band.

In rewriting (2.4)—(2.6) one obtains a set of four simultaneous nonlinear
differential equations:®

dii. Ga—ep nmE

ki T
dx w, kT L2T)
2 i?\‘r i
af = 2N —53) for <10 (2.8)
dx £€0
2 1'7\7( 4
ol = e(Naz —n) for z =0 (2.9)
dx £€0
dv,
— = F. 10
dx (2:10)

Equations (2.7)—-(2.10) cannot be integrated in closed form and certain
approximations, that are used in Sect. 3.1, are not sufficiently accurate for
the problem presented here. Therefore, the solution curves of (2.7)-(2.10)
are obtained by numerical integration.



Space-charge-limited current

With the tools given in the previous sections we are now able to analyze the
behavior of some semiconductors that are conventionally described as space
charge limited currents. Such behavior is observed in certain nn™*-junctions
in sufficient forward bias.

Under such conditions, Poisson and transport equations (1.17) and (2.3)
can be integrated in closed form. We will discuss such important example
below.

If, in an nn™-junction device with sufficient forward bias, the electron den-
sity in the entire lowly doped region can become much larger than the donor
density in this region; then the current through the device becomes controlled
by the surplus carriers originating from the adjacent highly doped region. This
current behaves much like the current in a vacuum diode 22 in which electrons
are injected from the cathode and carried to the anode following the electric
field, although limited by the space charge near the injecting cathode. This
current is, therefore, often referred to as an injected current, or as a space-
charge limited current®*(Mott and Gurney, 1940; Lampert, 1956; and Rose,
1978).

For spectroscopy of local states using space charge limited currents see
also Nespurek and Sworakowski (1990). For the theory of space-charge limited
currents in materials with an exponential distribution of capture coefficients
see Gildenblat et al. (1989). The temperature dependence of space-charge
limited currents in amorphous and disordered semiconductors is discussed by
Schauer et al. (1996)

Figure 2.9a shows that n > Ny in the entire region 1 with sufficient
forward bias; therefore, the space charge in the lower conducting region may
be approximated as
0=¢e(Ng1 —n) >~ —en. (2.36)

(=

Consequently, the Poisson equation becomes independent of the doping in this
region:
dF en(x
— = —L. (2:37)
dx £€0



Space-charge-limited current

In addition, the drift current becomes much larger than the diffusion
current in the lowly doped region with large enough forward bias, as one can
see from a comparison of Figs. 2.6a, b. This permits, with sufficient forward
bias, an approximation of the total current by the drift current alone:

Jn =ep n(x)F(x). (2.38)
After replacing n(z) in (2.38) with the Poisson equation (2.37) one obtains
: dF
In = —E&.OunF(I)E (2.39)

which can be integrated after separating variables, yielding

(To — )Jn = ccolt,, [F(I)Q_ FO]z‘ (2.40)

Whenever Fy << F(—d;), one can evaluate (2.40) at z = —d, for sufficient
forward bias and directly obtain with® F(d;) ~ V/d, an analytical expression
for the current-voltage characteristic:

(2.41)

that is, the current increases proportionally to the square of the applied voltage
and decreases with the third power of the width of the low conductivity region.



Space-charge-limited current

From the assumption used, it is evident that space-charge-limited currents
occur with sufficient forward bias in devices that have a thin enough region 1
to have the entire low-conducting region swamped with electrons, and have a
density of carriers at the injecting boundary which lies sufficiently above the
bulk carrier density in region 1 of the device. Such a device may alternatively
consist of a homogeneous semiconductor of length L with an injecting contact
(see Sect.3.2.1.1); its current follows the same, well-known space-charge-
limited current equation:

o —EEp T (2.42)

From the relation n > N, throughout the device, that is used to evaluate
the space charge (2.36) and the characteristics given in Fig.2.11, one sees
that the space-charge-limited current equation holds only for “thin devices”
in which the entire low-doped region can be swept over by electrons from
the n*- region. The injected currents then become rather large in such thin

devices even in the mV bias range as shown in Fig.2.11 and, in the given
approximation do not depend on the doping density or the step size beyond
a minimum range.



Space-charge-limited current
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Fig. 2.11. Space-charge-limited currents calculated from (2.42) with p_ =
100 cm? Vs_‘, £ = 10, and the device thickness as family parameter with L = 1,
1.2, 1.4, 1.6, 1.8, and 2-10~° cm for curves 1-6, respectively (the thinner the device,

the steeper is the increase of the current with bias, the more electrons are swept
through the entire device)



