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Tunnel effect 1s one of the most important
manifestations of quantum mechanics
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Fig.2. Die stark ausgezogene Kurve stellt den Verlauf einer der Eigenfunktionen
fiir 4 = 4,5 dar.




Classic analogy: full internal reflection
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In the geometric optics sin(r)
starts to exceed 1 when n2 1s
low enough. Thus, refraction
becomes 1mpossible.

Actually, electromagnetic wave
penetrates into the optically
more dense medium at a
distance of the wave length A.
It can be found by the indicated
set-up when 0 <A,

Hence, a massive particle
(electron, proton, etc.) directly
reveals its wave properties!



Classic analogy: full internal reflection

A particularly simple qualitative demonstration of frustrated internal reflection,

resembling Newton’s original observation, has been described by Pohl [9] and is
shown in Fig. 1.3.

If a knife blade is pressed against the outside of a glass of water and viewed through
the water from above, much more of it is visible than is in actual contact with the glass.
We can assume as a rough approximation that transmission is possible through a gap z
one wavelength thick (cf. Equation 1.7), say 0.6 um. If the radius of the glass is R
= 35 mm, simple geometry shows that the radius of the visible spot x is given by

x ~ (2Rz2)"* ~ 0.2 mm (1.8)
which can easily be seen.

The appearance of a transmitted beam of finite intensity is not the only phenomenon
associated with frustrated internal reflection. A detailed treatment shows that both the
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Fig. 1.3 Demonstration of the optical analogue of the tunnel effect



Examples of tunnel phenomena:
a-decay of heavy nuclei
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Scientists, who discovered the tunnel effect
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Scientists, who discovered the tunnel effect
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Cold emission of metal electrons

Cold emission current I(E) = IyD = Ae~Fo/E

E 1s the external electrostatic field



Cold emission of metal electrons
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Fig. 1.4 Field-assisted emission of electrons from metals. The shaded area represents the Fermi
band

j=Aexp[— B({ + ¢ — E)**/F]



Oscillation of a particle between two
potential wells

Initially the particle 1s in the left well
yn/f/* l//)/f'} ”/r/?

Separate wells A E=E,—Ey Coupled wells
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Oscillation of a particle between two
potential wells

Results of calculation:

W(¥) 1s a probability of the particle to occur in the left well at the moment

t L
U™ T = [dxy Upg¥n Limiting cases:

1. AE =0 W(t) =1—-sin? (/U UZ 't/h)

The particle spends equal times in both wells
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The particle 1s predominately in the left well



Tunneling 1n the periodic lattice;
electron band formation
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One-dimensional periodic lattice potential

AE 0 1s the bandwidth



Franz-Keldysh effect

Tunneling probability
W(B—C) from the valence
band AB into the conductance
band CD 1s proportional to
exp{- c[gg]3/2/E }, where _is the
forbidden-gap width. This is
Zener effect. It changes the
coefficient a . of the light
absorption in a semiconductor
in the homogeneous electric
field E. This is Franz-Keldysh
effect.



Tunneling in chemistry

The preceding chapter deals with the permeability of one-dimensional barriers
to particles of specified energy W. Under normal conditions a chemical
reaction involves a large number of systems covering a range of energies, and
in this context a more realistic model consists of a stream of particles in
thermal equilibrium impinging on a barrier. The simplest form of energy
distribution in such a stream is given by

dN 1 _

—=—e " WATdW 3.1

N kT >4
in which dN/N is the fraction of particles having energies between W and
W+ dW.

This expression is exact only when the energy is expressible as the sum of two terms,
each of which is proportional either to the square of a momentum (as in any form of
kinetic energy) or to the square of a co-ordinate (as in the potential energy of a
harmonic oscillator). It is therefore not strictly applicable to a stream of particles
moving in one dimension, as envisaged here. However, two square terms are involved
in many situations relevant to chemical kinetics, for example the total energy (kinetic
plus potential) of a harmonic oscillator, or the relative kinetic energy along the line of
the centres of two colliding particles. It is therefore reasonable to use the simple type of
Boltzmann distribution given by Equation 3.1 in applications to chemical kinetics.



Tunneling in chemistry

If J, is the total flux of particles striking the left-hand side of the barrier and
G (W) the permeability for an energy W, the rate J at which particles appear on
the right-hand side of the barrier is given by .

|

kT,

If classical mechanics were obeyed we should have G(W) =0 for W < ¥, and
G(W)=1for W > V,, where V, is the potential energy at the top of the barrier.
The classical rate J_ is therefore )
J =.{_Q. c‘oe--W/I(TdW=J e~ VolkT (3 3)
¢ kT)y, ? ' ’
By combining Equations 3.2 and 3.3 we can formulate a tunnel correction Q,
which is the ratio of the quantum-mechanical rate to the classical rate, i.e.
J  eVolkT [ i :
=—= G(W)e " TdWw. 4
Q 7= L (W) (3.4)
The integrand in Equation 3.4 contains two opposing factors, exp (— W/kT)
which increases with decreasing W, and G(W) which decreases with decreas-
ing W. The product G(W) exp(— W/kT) represents the distribution of

transmitted particles as a function of energy.

J G(W)e~ Wit gy, (3.2)




Tunneling in chemistry

The tunnel correction must have the same value for both the forward and the
reverse reaction, so that for an endothermic reaction the appropriate barrier
height is equal to the height of the barrier for the reverse process. This is
illustrated in Fig. 3.4, which shows that only that portion of the barrier which
lies above both the initial and the final states is available for tunnelling. This
portion is greatest when the reaction is thermoneutral, leading to a maximum
tunnel correction for this configuration. ‘

Endothermic Thermoneutral Exothermic

Fig. 34 Region available for tunnelling in endothermic, thermoneutral and exothermic
reactions i



Tunneling 1n chemistry
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Fig. 5.1 Arrhenius plot for the isomerization of 2,4,6,-tri-t-butylphenyl and its completely
deuterated analogue (data from [231-233])



Single-electron tunneling

The single-electronics is based on a group of physical effects with a common
origin: a substantial charging of relatively large conducting objects (containing
up to billions of free electrons) by addition/subtraction of one of the electrons
(for the case of superconductors, a single Cooper pair or a electron-like quasi-
particle). These effects are possible because the negative electric charge of the
background electrons is completely compensated by the positive charge of the
nuclei, but the charge of the new electron is not. Therefore, transfer of the
electron causes a change

Ap=e*/C (1)

in the electro-chemical potential of the conductor, where C is its electric capac-
itance. For a ball with the radius of 1 um in air, C is of the order of 10~1¢ F, so
that Ap is of the order of 1 meV. Thus, if the scale of thermal fluctuations kT
is well below Ap (T' < 10 K in the above example) the single-electron charg-
ing can have profound effects on the electron transport properties of systems
including small conductors.

For the simplest system of two small conductors separated by a tunnel barrier
the orthodox theory gives a very simple prediction [1]: if the capacitance C of
the system as a capacitor and the tunnel conductance G of the junction are
small enough

C < ez/kBT) (2)
G < €*/h, 3)
the tunneling is vanishing within the following range
e e
- = = 4
5<Q@<s3 (4)

of the initial electric charge of the system. Physics of this so-called ” Coulomb
blockade of tunneling” [6] is very simple: if condition (3) is satisfied, the dom-
inating term in the system energy is just the charging energy Q%/2C. It is
straightforward to get convinced that within the Coulomb blockade range (4)
tunneling of an electron (i.e. the change @ — @ =+ e) is energy-unfavorable, so
that at low temperatures (3) this process is impossible.



Single-electron tunneling

The physical origin of the Coulomb blockade of single-electron tunnel-
ing is quite simple. In a current-biased junction, each tunneling event leads
to a change of the Coulomb energy E,= Q*/2C (Fig. 1)

(39)

If an initial charge Q is within the limits given by (4)
this energy change is positive for any sign of AQ = +e,
and hence at low temperatures (2)

tunneling events are virtually impossible. Q2
2C

Correct formula:

AE = e(e/2+Q)/C

-e/2 0

&

+e/2 Q

Fig. 1. Energy diagram illustrating the origin of the Coulomb block-
ade of the single-electrons tunneling in a small, current-biased junc-
tion. (—) Transitions favorable with regard to energy; (- -)unfavor-
able transitions. At low temperatures only the former transitions are
possible, so that for |Q|< e/2 all transitions are blocked.



Single-electron tunneling

As noted in the Introduction, the final results depend
substantialy on the properties of the eigenvalue spectra of
the operator Q. Since, according to (3), tunneling leads only
to discrete charge transfer (AQ = + e), one might assume
that the operator Q = @ — Q, takes on only discrete values
ne. This assumption is actually correct when Q is the charge
on an isolated conductor connected to the “outside world”
only via the tunnel current. This is the case, for example, for
a metal granule in the oxide layer of a tunnel junction,*®
which leads in particular to oscillatory (e-periodic) depen-
dence of the properties of such structures on the values of Q,
observed in experiment.”

A more realistic situation for an ordinary tunnel junc-
tion, however, is one in which it is shunted by an albeit small
but finite metallic-type conductance G, (this shunting is
necessary at the very least for the measurement of the elec-
trodynamic characteristics of the junction). The electric
charge is transported through such a “shunt” as a result of

small displacements of a large number of carriers, so that
this charge is not discrete in the scale of e.

H = 3(Q) + H; + H\{k} + Hylk;)} + Hlks} — 19, 3

where H. is expressed by Equation (1), while
Q’ f
Q=57 ¢=) vd, V=0,

I=10 - Lik). )

The operator Q of the electric charge of the junction can
be expressed via the same creation and annihilation
operators as H:

e
Q= =g <;<Z CL,Ck, - 2: c}‘zckz) + const., (5)
1 2

so that H and Q do not commute. One can readily prove
that the following commutation relations are valid for an
arbitrary function F(Q):

H.F(Q) = F(Q * o)H.. 6)

The Hamiltonians H,, H,, and H describe the energy of the
internal degrees of freedom {k,}, {k,}, and {kg} of the two
electrodes of the junction and of the “shunt” G,
respectively. The last term in Equation (3) describes the
interaction of the junction with the current / (Figure 1).



Single-electron tunneling

The volt-ampere characteristic of the junction then tends
toward the linear asymptotic relation

V=G~'T +§Esign ) (43)




