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2.5. Drift-diffusion equations

Based on the concepts derived in the previous sections we can now
establish the drift-diffusion equations. The total hole current density in a
semiconductor is composed of the sum of the drift and the diffusion
components of current. Similarly, the total electron current density in a
semiconductor is composed of the sum of the drift and the diffusion
components of current. Using 2.3.1, 2.3.2, 2.4.1 and 2.4.2 we obtain:

d,
Jp=qupp¢ -qugf (2.5.1a)
and
dn
or, in a three-dimensional case:
: Jp=qupp € - gDp grad(p) (2.5.2a)
an
Jn=qunn & + gDy grad(n) (2.5.2b)

The total density of the current flowing at any point in the
semiconductor is simply obtained by adding the hole and electron current
densities:

J=Jn+Jp
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2.5.1. Einstein relationships

The mobility and diffusion coefficient in a semiconductor are related
to each other. This relationship is derived in the following section.
Consider a piece of semiconductor material with a non-uniform doping
concentration. Let the doping atoms be arsenic in silicon and for the sake
of simplicity we will consider a one-dimensional case. The doping
impurities are N-type and their concentration is Ng(x), as shown in Figure
2.6. Assuming all doping impurities are ionized, we have that n(x) =
Nyg(x). The presence of an electron concentration gradient gives rise to an
electron diffusion current. The electrons diffusing to the left "leave
behind" positively charged arsenic atoms. These atoms occupy
substitutional sites in the crystal lattice, and unlike electrons, cannot
move. Because of the increased number of electrons in the left-hand part
of the sample and the presence of positive charges in the right-hand part
an internal electric field develops locally. This electric field tends to
"recall" the electrons towards their place of origin. This electric field and
the associated potential drop are noted Ey(x) = -d®,(x)/dx, where the

subscript zero implies an internal or "built-in" field under thermal
equilibrium.
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Figure 2.6: Non-uniform doping profile in an N-type silicon sample.
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With no external bias applied to the sample there is no current flow and
the force of the internal electric field exactly balances the diffusion force.
Using the drift-diffusion equation 2.5.1b we can write:

Jn=qupné&, + anE; = (2.5.3)

P,
Recalling that n(x) = n, ex;{g—égl] (Expression 1.3.20a), and since by

definition &, = -d®y/dx, one obtains:
d¢0 dn

qunn’ > = qDy
4
D,x) 7 dD dn d®,
qﬂnnoexp[q e = = qD"E;E—O

D,(x) 7 dD,

Einstein Relationships

For electrons:
D, = %T Un (2.5.4a)
For holes:
kT
Dy = 'q— Up (2.5.4b)

Relationships 2.5.4 a and b are called "Einstein relationships". They show
that diffusion coefficients and mobilities represent the same thing, within
a multiplication constant, k7/g. The value kT/g has the dimension of a
voltage, and is called "thermal voltage". It is equal to 25.9 mV at room
temperature and is frequently noted "Uz" or "V7". Thus if the mobility is
known the diffusion coefficient can be calculated.
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2.6. Transport equations

The transport equations are a set of five equations that govern the
behavior of semiconductor materials and devices. In the previous section
we have related the flow of current to drift and diffusion mechanisms.
The first two transport equations are the drift-diffusion equations given
by Relationships 2.5.2a and 2.5.2b and are repeated below:

Drift-Diffusion Equations

Jp=qupp € -qDp grad(p) (2.6.1a)
and Jp=qupn& +qD, grad(n) (2.6.1b)
or, in one-dimensional problems:

Jp=qupp& -qDp P
p~—49KpDPC -4Cp .
and Jn=qupn& +an'a""'1'

dx
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Using the Maxwell equations V@ = p and D = € &, where 9D is the
displacement field, and using the relationship between electric field and
potential &(x) = -d®(x)/dx one readily obtains the Poisson equation:

V2D(x,y,2) = div(grad(P(x,y.z)) = - div &

(x,y,z) + -
~ BR2E_ L poneNy-N) (2.6.2)

where & is the permittivity of the semiconductor and o 1s the local charge

density (C/em3) in the semiconductor. If all the doping atoms are ionized,
which is the case at room temperature, one obtains:

Poisson's Equation

PP 2P P
V2<D(.t,y,z) - o2 T Byz - &2
e éis [ (p(x.y,2) - n(x,y,z) + N4(x,y,2) - Nq(x.y,2)) ] (2.6.3a)
or, in short:
V2 = - E% (2.6.3b)
and for one-dimensional problems:
@ -.£ 2.6.4
dx? & (2.6.4)
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In the previous derived Equations 2.6.1a and b, and 2.6.4, steady-state was
assumed, i.e., there was no time dependence of any of the variables.
Another set of equations which describe the evolution of carrier
concentration with time can be derived. However, the local carrier
concentration may vary for the following reasons:

¢ External forces can be applied to a region of the semiconductor material such that
carriers are either added to or removed from that region (i.e. carrier injection in a
PN junction).

0 The width of the bandgap in a semiconductor is small enough to allow for
electrons to "jump" from the valence band into the conduction band and
reciprocally. In addition, electrons can also "jump" from the conduction or
valence band into permitted energy levels located inside the bandgap. These
levels arise from the presence of trace impurity elements or crystalline defects. If,
for instance, an electron jumps from the valence band into the conduction band,
it becomes free to move in the crystal. At the same time, a free hole is created in
the valence band, which is free to move as well. Such an event is called "carrier
pair generation" or, more simply, "generation". An electron can also "fall" from
the conduction band into the valence band. In this process called "recombination”
both a free electron and a free hole are lost. More complex
generation/recombination processes can occur as well, in which permitted energy
states within the bandgap are involved. The net, intrinsic,
generation/recombination rates for electrons and holes are noted Uy, and Uy,
respectively. Generation/recombination mechanisms will be analyzed in more
detail in Chapter 3. The generation/recombination rates, Up and Uy, are taken as
positive in the case of recombination, and negative in case of generation.

¢ An external source energy can increase the hole and electron concentration. If
enough energy is transferred to an electron in the valence band, it can "jump”
into the conduction band, a process by which a free electron-hole pair is created.
The external generation rates for electrons and holes are noted G, and Gp,

respectively (unit: em3 sec’l). A typical example where external generation is
useful is the conversion of sun light into electrical energy in a solar cell.
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A clear distinction should be made between the intrinsic
generation/recombination rates Uy and Up, and the extrinsic generation
rates Gy and Gp:

O The intrinsic generation/recombination rates express the rate at which free electrons
and holes are created or annihilated within a unit volume of the semiconductor
material in the absence of any outside influence. Uy and Up are positive if
recombination dominates over generation, i.e. if more free electrons and holes

disappear by spontaneous recombination than free electrons and holes are created
within the material by thermal energy. Uy and Uy, are negative if there is more
intrinsic carrier generation than recombination. If the rates of spontaneous
generation and recombination are equal, both Up, and Uy, are equal to zero. In
other words, Uy, = (free electron intrinsic recombination rate minus free electron

intrinsic generation rate) and Up = (free hole intrinsic recombination rate minus
free hole intrinsic generation rate).

0 The extrinsic generation rates express the rate at which free electrons and holes are

created by an outside source of energy, such as light illumination. Extrinsic
generation involves only generation (i.e. no recombination) events.
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To derive the equations describing the variation of the number of carriers
due to generation/recombination events we will consider a differential
volume of semiconductor material (Figure 2.7). The cross-sectional area
of the volume under consideration is A with length dx. An electron
current density Ju(x) (unit: Amps/cm?) enters the volume and a current
density Jp(x+dx) flows out of it.
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Figure 2.7: Elementary volume used for the derivation of
the continuity equations. [6]

For one-dimensional current flow in the x-direction the variation of the
number of free electrons in the volume Adx as a function of time is given
by the number of electrons entering the volume, minus the number of
electrons flowing out of the volume, plus the number of electrons
generated minus the number of electrons recombined:

on ., (JIalx) Jn(x+dx)
Aatdx-A('_’q e )+A(G,,-U,,)dx (2.6.5)
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Jn(x+dx) can be developed in series, which yields: Jp(x+dx) = Ju(x) +
‘Un(x)dx*-
dx

Using the latter result Equation 2.6.5 can then be rewritten to obtain the
continuity equation for electrons:

on 1 0Ju(x)

5 =;,‘"§;‘" + (Gp - Up) (2.6.62)
A similar calculation, made for holes would yield:

op _ 10Jp(x)

o =g ox +(Gp - Up) (2.6.6b)

Extending Expressions 2.6.6a and 2.6.6b to three dimensions one obtains
the continuity equations:

Continuity Equations
2—'; = é divdy + (Gy - Up) (2.6.7a)
and %Itz =- % div Jp + (Gp - Up) (2.6.7b)
or, in one-dimensional problems:
o _ ;1}%21 + (G - Up) (2.6.6a)
and %? =- 211— %‘If +(Gp - Up) (2.6.6b)

The set of equations composed of the drift-diffusion equations, the
Poisson equation, and the continuity equations 1s called the "transport

equations". The transport equations allows one to derive most properties
of semiconductor devices.
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2.7. Quasi-Fermi levels

At thermodynamic equilibrium, and in the absence of applied external
forces, the equilibrium carrier concentrations are a function of the
internal potential @4(x,y,z) in the semiconductor. The carrier
concentrations are related to the internal potential by the Boltzmann
relationships 1.3.20a and 1.3.20b. These can be rewritten in the following

form:
-E 0 ﬂ(po x,z,zg
: ‘ p[ iT i (2.7.1)

n(x,y,z) = nj exp[

Ep-E -qPoy(x,y,2
p(xy.2) = n exp[ - "’] exp[ £ ‘;C(Ty : ] (2.7.2)
and the pn product is given by:
p(xyz) n(xy,z) = nf (2.7.3)

Under thermodynamic equilibrium conditions the Fermi level, EF, is
unique for both electrons and holes.
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Under non-equilibrium conditions, however, this is no longer the case. For
instance when excess carriers are continuously injected into the
semiconductor material or if light is continuously shone on it, the
relationship between the internal potential @(x,y,z) and the electron and
hole concentrations, n(x,y,z) and p(x,y,z) becomes more complicated. The
Boltzmann relationships, however, are still valid if one introduces the
notion of "quasi-Fermi levels". Quasi-Fermi levels are also called "imref”,
which means "imaginary reference”, and quite conveniently, corresponds
to the word "Fermi" spelled backwards. Instead of a single Fermi level
common to both types of carriers let us define an electron quasi-Fermi
level, EFp(x,y,2), and a hole quasi-Fermi level, EFp(x,y,z). The Boltzmann
relationships can be rewritten in the following form:

n(x,y,z) = n; exp[EFn(x ,z)-E,o] exp[qg’%:&g] (2.7.4)

E 2 °E ¢ P4
p(x,y,z) = nj exp[ p,,(xyz) w] p[m] (2.7.5)
and the pn product is equal to:

pley2) nxy.z) = n exp[EF n(t.).2) k'TEF p(x.y.2) ] (2.7.6)
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From Equation 2.6.1b we know that the electron current density is given
by:

Jy=qupn& +qDy grad(n) 05 By
Taking the derivative of Expression 2.7.4 we can write:

-E D
grad(n) = n; exp["Mj' exp[%] I‘CI‘T'.(grad(Epn) + g grad( <D))

= _T [grad(EFy) + q grad(®)] (2.7.8)

Introducing the result of Equation 2.7.8 into Relationship 2.7.7 one
obtains:

Jn=qunnE + gDy 1r [grad(Epy) + g grad(®)] (2.7.9)

Using the Einstein Relationship Dy, = %J:pn we finally obtain:

Iy = n py grad(Egy) (2.7.10a)
A similar calculation, made for holes, would yield:
Jp = p pp grad(Epp) (2.7.10b)

The two last relationships show that, in the most general case, the current
is not linked to the gradient of the internal potential, @o, but to the
gradient of the quasi-Fermi levels. Under thermodynamic equilibrium
conditions and in the absence of external forces. however, EFp = EFp =

2
Ef = a constant, and therefore, J; = Jp = 0, and pn = n.
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4.1. Introduction

A PN junction is formed when a P-type and an N-type semiconductor
are in contact. If the N-and P-type regions are made out of the same
semiconductor material (e.g. N-type silicon and P-type silicon), the
junction is a homojunction. If the semiconductor materials are different
(e.g. N-type silicon and P-type germanium), the junction is a
heterojunction. Heterojunctions are dealt with in Chapter 9.

A diode is a semiconductor device consisting of a single PN junction
(Figure 4.1). Unlike a resistor, it has a highly non-linear current-voltage
characteristic and is often used as a rectifying element. Some diodes can
emit light (light-emitting diodes), and others can emit laser light (laser
diodes). The proper combination of two PN junctions produces a bipolar
transistor, a device capable of amplifying electric signals.

P

P-type N-type

(V)

Figure 4.1: PN junction and symbol representing a diode.

The PN junction presents the following property: It allows current flow
in one bias direction, but not in the other bias direction. Hence it rectifies
the current. The sign convention used in this chapter is shown in Figure
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4.1. The applied voltage, Vg, is positive if the potential applied to the P-
side is higher than that on the N-side. As illustrated in Figure 4.2 current
flows through the diode if ¥, is positive, and does not if Vg is negative. If
Vaq > 0 the junction is said to be forward biased, and if ¥4 < 0 it is reverse
biased.

$

J

0 Ya

>

Figure 4.2: Current-voltage characteristics of a PN junction.

Experimental measurements show that the current in a PN junction, I,
obeys the following equation:

I=Is(exp[gk%?]- I) (4.1.1)

where [ is a constant and ¥V is the voltage applied to the diode.
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An analogy of the diode is a valve which controls liquid flow (Figure 4.3).
When a pressure differential is applied in the forward direction, the valve
opens and allows the liquid flow. If the pressure differential is applied in
the reverse direction, the valve closes, and no liquid flows, except for a
few drops if the valve is imperfect and somewhat "leaky".

Forward

Fa

valve

Reverse

Figure 4.3: Fluid mechanics analogy of a pn junction to a valve.
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4.2. Unbiased PN junction

We now consider a PN junction at thermodynamic equilibrium, i.e. in
the absence of an applied bias (Vz=0). Let us first focus on the P-type and
the N-type region taken separately, as if there were two separate pieces
of semiconductor material. For simplicity, doping concentrations in both
pieces are constant, and equal to Ng (cm3) in the N-type region, and Ng
(cm3) in the P-type region. The energy band diagram of the two pieces
of semiconductor are shown in Figure 4.4.

P N
Ec E
Ern
_______________ El ----'—_-------'Eq
Erp
Evy Ev

Figure 4.4: Energy band diagram in the N- and P-type regions
taken separately.

Using Expressions 1.3.15a and 1.3.15b one can write:

EFpN-Ei=kTin ( in the N-type region, and

:clz

N,
Ei-Epp=kTIn (;Q in the P-type region.
1
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Let us now build the PN junction by connecting the P-type region to the
N-type region. The surface where the contact is made is called the
"metallurgical junction”. A junction where the doping concentration
"abruptly” switches from P-type to N-type (at the metallurgical junction)
is called a step junction. We already know from Section 14 that the
Fermi level is unique and constant in a structure under equilibrium:
electrons instantly diffuse from the electron-rich N-type region into the
electron-poor P-type region, and holes from the P-type material diffuse
into the N-type region. As a result of the charge displacement an internal
built-in potential called junction potential, @y, is formed at the junction,
as shown in Figure 4.5.

Within a multiplication factor -g the junction potential is equal to the
curvature of the energy bands:

N N N
EpN - Epp = q®, = kTIn (—ﬁn‘ | + KT In (—ﬂn,) = len( 24 @2
i L
I

and thus:

®, = ’ff In (]X“f—") (4.2.2)
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qd,

Ev

Figure 4.5: PN junction and corresponding energy band diagram.[!]

When electrons diffuse from the N-type region into the P-type material,
they "leave behind" the ionized donor atoms they originated from. These
atoms occupy substitutional sites in the crystal lattice and cannot move
within the crystal. The region where these positively charged ions are
located constitutes a space-charge region called a "depletion region”
because it is depleted of electrons (Figure 4.6).
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The positive charge in the depletion region attracts electrons such that at
equilibrium, the force of diffusion pushing electrons into the P-type

region is
"recalls"”

diffusion
depletion
and bears

exactly balanced by the force of the built-in electric field that
the electrons back into the N-type region. Similarly, the
of holes from the P-type into the N-type region gives rise to a
region in the P-type material. This region is depleted of holes
a negative charge because of the presence of negatively charged

acceptor ionized atoms. There are several names for the depletion region

located around the metallurgical junction: it can be called the "depletion
region”, the "space-charge region” or the "transition region".

depletion region (N-side)
. -

. positive ions
e-e 4_ // po
R

: ef.‘-
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¢ e

N
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depletion region (P-side)
o

FH e
negative ions —\—i.“__e N
—Ipo ht
OF > ht

O——tp+ h*
O—»° +

£

Figure 4.6: Creation of depletion regions by the diffusion of
electrons and holes.
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The electric field and the potential variation in the space-charge region
can be calculated using the Poisson equation (Expression 2.6.2). For a
one-dimensional junction the problem simplifies to:

2P + oF
F(")=.._-E‘l;(p.n+Nd.1sia) (4.2.3a)

Using the Boltzmann Relationships 1.3.20a and 1.3.20b we obtain:

A2 P -qP(x D(x + -
__d_;gﬂ =. -Eq; % exp[ T ] - ng exp[qk_TZ] + Nd - Na} (4.2.3b)

T . B
with N, =Ng and N, = Ng.

Equation 4.2.3b cannot be solved analytically and a close-form solution
for the potential cannot be found. It can, however, be simplified by using
the "depletion approximation”. The depletion approximation assumes
that the space charge is composed only of ionized doping impurities, and
that the contribution of free carriers to the local charge is negligible.

Furthermore, the carrier depletion in the space-charge regions is assumed
to be complete. In other words, there are no free electrons in the
depletion region on the N-type side, and no free holes in the depletion
region on the P-type side. As a result, the charge densities in the
depletion regions are equal to gNg in the N-type material, and -gN, in the
P-type material. The depletion regions extent to a distance /o on the N-
type side, and a distance -Ipo on the P-type side, where the metallurgical
junction is taken as the origin (Figure 4.7). Additionally, the electric field
and potential are shown in Figure 4.7, which can also be derived from
Poisson's equation with the appropriate boundary conditions.
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A Ap(x)
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Figure 4.7: Charges (A), electric field (B) potential (C) and energy
bands (D) in a PN junction.[2]
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With the depletion approximation, a closed-form analytical expression
can be found for the electric field &(x), the potential @(x), as well as for
Ipo and Ipe by utilizing Poisson's equation and Gauss' law. The value of the
charge density p(x) can be expressed for four separate regions and are
given by:

plx) = 0 for -00<x<-l, (quasi-neutral region)
-gN;  for lpp<x <0 (space-charge region)
gNg  for 0<x<lyy (space-charge region)
0 for Ino <x <00 (quasi-neutral region)

We will assume that charge neutrality exists in the quasi-neutral regions.
Therefore, the electric field is zero in these regions. Using all the above
assumptions the Poisson equation can be integrated a first time to yield
the electric field:

for -00 <x < -Ipy: Ex)=0
2 dé{(x .
for ‘lpo <x<0: dxgx) = di) = g;Na with 6('1p0)=0
I}
qNa
E) = -5 (x + Ipo) (4.2.4)
PP dé(x .
for 0 <x < lyp: dxz(") - di) =-§S-Nd with E(lne)=0
I}
R (42,9

and, for I, < x < 00 one obtains: é(x)=0
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The electric field is continuous at x=0 by imposing Gauss' law, which
yields:

N, N4
B by = - T 1y = Nylpo = Nilo (4.2.6)

Actually, the electromagnetic induction D rather than the field E should be
continuous. However, here 1t does not matter because the dielectric constant
¢ 18 the same in the whole area.

Relationship 4.2.6 reiterates charge neutrality in the device, since it states
that the total negative charge in the depletion region on the N-side of the
junction, -qNglye, is equal, in absolute value, to the total positive charge
on the P-side, gNglpo. The potential distribution is obtained by integrating
the Poisson equation a second time. In the P-type and N-type quasi-
neutral regions the potentials are @po and Ppg, respectively. Using these
as boundary conditions yields:

for -00 <x < 'lp0: ¢o(x)=¢po



for 'lpo <x<0:

for 0 <x<lyn:

for lno < x <00;

The PN junction diode

dd N
-C(x) = 40) qgs‘g (x + Ipo)

d —
"y
N, 2
o) = 5ot (:+ lpo) + Bpo (42.7)
dod N,
-E(x) =_d$cl = q{;;d (Ino - %)
N, 2
o) = Pro- 5t (Ino - ) (4.2.8)
@y (5)=Ppo

The potential is a continuous function at x=0. Combined with 4.2.2 this
condition gives an alternate expression for the junction potential, @p:

” 9%

Junction Potential

Ny 2 _qNa, 2 kT, (NaN
By = Byo - Bpo = %g;i bo +354 1, =?ln( “24) (4.2.9)

2&g
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The electric field has a single maximum value at x=0. Its expression can
be obtained using 4.2.4 or 4.2.5:
Maximum electric field

o _dNa, _ aNd,
max — "~ go ‘po =" g ‘no

(4.2.10)

Using Expressions 4.2.6 and 4.2.9 the width of the depletion regions. /po
and Ipg, can be expressed as a function of the junction potential:

Width of Depletion Regions
N7
Ipo -\/ 4 No(NatNo (4.2.11a)
and
_A[%Es_PoNg
Ino = \/ g Ni(No+NJ (4.2.11b)

The sum of the depletion regions is called the "transition region" which
contains both ionized acceptor and donor impurities. The width of the
transition region is given by:

2&; D, +
1,,0+1p0=—\/ ;s Oj(éva‘l’dedl (4.2.12)
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Actual PN junctions are strongly asymmetrical, which means that one
side is doped much more heavily than the other. Consider the example of
a PN™ junction, with Ng=1015 cm-3 and Nz=1020 cm-3. Since Ng>>Na,

one obtains:
283 ¢0 28.£¢0Na
o = \’—— >> |, = 4.2.13
po g N, no q N; ( )

and. therefore.

bio + byo & lyo (4.2.14)

Comment: In a strongly asymmetrical junction, the width of the transition region is

virtually equal to the width of the depletion region with the lowest doping
concentration.
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4.3. Biased PN junction

If no bias is applied to a PN junction the built-in junction potential
is equal to @,, as we have seen in the previous Section. The drift current
generated by this potential variation is exactly equal and of opposite sign
to the diffusion current caused by the carrier concentration gradients, such

that the net current flow (drift + diffusion) is equal to zero. The potential
variation @(x) actually acts as a barrier which prevents further diffusion
of electrons into the P-type region and holes into the N-type region,
once equilibrium has been established. That is why @, is sometimes
referred to as a "potential barrier” which the carriers must overcome in
order to diffuse.

Consider the case when an external bias, Vg, is applied to the junction. Vg
is considered positive if the potential of the P-type region is higher (more
positive) than that of the N-type region. We will assume that the current
flowing through the device is small enough such that the potential drops
across the quasi-neutral regions are negligible. As a consequence, the
external applied potential, Vg4, is supported entirely by the transition
region, and the internal potential, @, is equal to:

P=D,-Dp=0p-V, (4.3.1)
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Noting that -, and I are the edges of the transition region (Figure 4.8),
the distribution of charges in the structure are:

px) = 0 for -0 <x<-l, (quasi-neutral region)
-qNg  for -lp<x <0 (space-charge region)
qNg4 for 0<x<ly (space-charge region)
0 for Ip<x<® (quasi-neutral region)

The Poisson equation can be solved just as it was in Equations 4.2.4 to
4.2.12, by replacing Ino, Ipo and @g by I, Ip and (Pp - Vg), respectively.
The result is:

2&5 (Do - Vo) Ng
i =\f 4.3.2
?=N'qg NaatNo ey
and
1—\j%§£u—w'V & (4.3.3)
n q Ng (Nga+Ng) e

The total width of the transition region is equal to:

o [255 (@0 V) (NotND
In+1lp= \/ . NoN (4.3.4)

It is worth noting that the width of the transition region increases when a
reverse bias is applied (V4 < 0) and that it decreases when a forward bias
(Va > 0) is applied (Figure 4.8).
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Figure 4.8: Potential in a PN junction for V,=0, V;>0 and V;3<0.
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4.4. Current-voltage characteristics

As we have seen in the previous Section the potential drop across the
transition region is equal to @y - Vg, where ¥4 is the applied voltage.
Therefore, if Vg is positive, the potential barrier in the junction is lower
than its equilibrium value, @,. As a result the diffusion and electric field
forces are no longer equal and of opposite sign. Diffusion acting on the
carriers is only partially compensated by the force resulting from the
junction potential variation, and therefore, holes can flow from the P-
type region into the N-type semiconductor and electrons can flow from
the N-type region into the P-type semiconductor. The resulting currents
are shown in Figure 4.9. The holes injected into the N-type region are
excess minority carriers (current "1" in Figure 4.9). These carriers diffuse
into the N-type quasi-neutral region an average distance called the
"diffusion length" before recombining with the majority carriers
(electrons). Since each recombination event consumes an electron, a
resulting electron current appears in the N-type region where electrons

are continuously supplied by the external contact (current "2" in Figure
4.9). Similarly, the electrons injected into the P-type region (current "3"
in Figure 4.9) are excess minority carriers which recombine with holes in
the P-type region. Since each recombination event consumes a hole, a
resulting hole current appears in the P-type region (current "4" in Figure
4.9). It i1s worth noting that current "1" is equal to current "2" and that
current "3" is equal to current "4", in Figure 4.9.
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If the junction is reverse-biased (V4<0) the amplitude of the potential
barrier is increased beyond its equilibrium value, @,. Diffusion of holes in
the N-type region and diffusion of electrons in the P-type region are
reduced and net current, resulting from the drift of holes from the N-type
region into the P-type region and the drift of electrons from the P- type
region into the N-type region, is observed. The magnitude of this current,
however, is extremely small since it involves only minority carriers in the
vicinity of the edges of the transition region.

Transition zone
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hole current electron current
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Figure 4.9: Forward-biased PN junction; 1: holes injected from the
P-type region into the N-type region; 2: electrons recombining
with the holes injected in the N-type region; 3: electrons injected
from the N-type region into the P-type region; 4: holes
recombining with the electrons injected in the N-type region.
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Current Density in the ideal PN junction

v
J = Js [ex gk—T“) i 1] (4.4.27)

where Js is called the "saturation current density" and is equal to:

Saturation Current Density

_ 4Dnpo , 4Dppno _ 2L1/& _1_1,_92
BT L e N Y N (4.4.28)

[t is worthwhile noting that the magnitude of the current flowing in a
reverse-biased PN junction (¥4<0) is equal to Js. Jg is independent of the
applied bias and of the magnitude of the electric field in the structure. It
is, however, quite dependent on temperature.

The current in the device can readily be obtained by multiplying the
current density, J, of expression 4.4.27 by the cross-sectional area of the
junction, A such that / = AJ (amperes). The current expression obtained
in Relationship 4.4.27 is in good agreement with experimental current-
voltage characteristics, since Expression 4.4.27 is equivalent to
Expression 4.1.1, where Iy = A J;. Note that the reverse-bias current of
the diode, -I§, is sometimes called a "leakage current".
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4.7. Solar cell

A solar cell is a PN junction in which the generation of carriers by
an external source of energy. usually sunlight, is utilized to generate
electrical power. In other words a solar cell directly converts solar energy
into electrical power. The design of most solar cells is quite elaborate,
such that the efficiency of energy conversion is maximized. In this
Section, however, we will exemplify the operation of a solar cell using a
simple PN junction structure. Solar cell operation is based on the
generation of electron-hole pairs in the transition region, and the

separation of both types of carriers by the junction electric field. Let's
take the example of the P¥N junction shown in Figure 4.23. We will
assume that illumination by sunlight uniformly generates G electron-hole
pairs per cubic centimeter and per second, at any location in the
semiconductor material. Using the same notations as before, the
transition region extends from -Ip to /. The bias applied to the device is
Va.
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Figure 4.23: Geometry of a simple solar cell.
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Figure 4.24: Current-voltage characteristics of a solar cell in the dark
and under illumination. The area gray rectangle represents the power
supplied by the cell to a load having a resistance Rp..

Figure 4.24 shows the current-voltage characteristics of a solar cell in the
dark and under illumination. The insert shows a simple circuit where the
solar cell under illumination delivers electrical power to a load resistor,
Ry. The operation point of the circuit is given by the intersection of the
I- V characteristics of the illuminated cell with the load line ¥=IRy. The
area of the gray rectangle represents the power supplied by the solar cell
to the load. Optimization of solar cell performance involves the use of
anti-reflection coatings, which increases light absorption, and therefore,
the generation rate, G. The use of high-quality semiconductor material
with a high minority carrier lifetime, and the choice of a load resistance
value, Ry, maximizes the power transferred to the load (i.e.: which
maximizes the area of the gray rectangle in Figure 4.24).



