Информатика Лекция 4

Арифметические и логические основы ПК

Системы счисления
Правила перевода целых и дробных чисел
Арифметические действия над целыми числами
Схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ
Одноразрядный сумматор

<u>Система счисления</u> — это совокупность приемов и правил записи и считывания чисел

- Позиционные;
- Непозиционные с/сч.

XXXII

$$700 + 50 + 7 + 0,7 = 7 \cdot 102 + 5 \cdot 101 + 7 \cdot 100 + 7 \cdot 10 - 1 = 757,7.$$

Правила перевода целых чисел

— правило последовательного *деления:* Для перевода целой части из С.С. с основанием р в С.С. с основанием q необходимо делить исходную число и полученные значения частного на основание системы, в которую необходимо преобразовать данное число, представленное в С.С. р. Остатки от деления дают последовательность цифр представления целого числа в С.С. q. Запись числа в новой с.с. происходит с конца.

Частичн ые частные	13 4	67	33	16	8	4	2	1	Последн ее частное
Остатки	0	1	1	0	0	0	0		
OCTUTAN		1							

Правила перевода дробных чисел

Правило перевода дробной части <u> — правило последовательного</u> умножения: Для перевода правильной дроби из С.С. с основанием р в С.С. с основанием с необходимо умножить исходную дробь и дробные части получающихся произведений на основание системы в которую необходимо преобразовать данное число, представленное в С.С. р. Целые части получающихся произведений дают последовательность цифр представления дроби в С.С. q.

 0.375 * 2 = 0.75
 0

 Старший Значащий Разряд
 (C3P)

 0.75 * 2 = 1.5
 1

 0.5 *2 = 1
 1

 Младший ЗР (МЗР)

 Результат
 0.011

Запись чисел в различных с/сч

Swiffied Hitech D					
10 с/сч	2 с/сч	8 с/сч	16 с/сч		
1	1	1	1		
2	10	2	2		
3	11	3	3		
4	100	4	4		
5	101	5	5		
6	110	6	6		
7	111	7	7		
8	1000	10	8		
9	1001	11	9		
10	1010	12	A		
11	1011	13	В		
12	1100	14	C		
13	1101	15	D		
14	1110	16	E		
15	1111	17	F		
16	10000	20	20		

Представление чисел

- с фиксированной точкой;
- с плавающей точкой.

 $N=\pm M P^{\pm R}$,

где M — мантисса числа (|M|<1); R — порядок числа. P — основание системы.

Нормализованным называют такое число, в старшем разряде мантиссы которого стоит единица.

Связь 8 и 16 с/сч с 2 с/сч

$$(537.1)_8 = (101\ 011\ 111.001)_2$$

 $(1A3.F)_{16} = (1\ 1010\ 0011.1111)_{16}$

Перевод получается заменой цифры на эквивалентную двоичную триаду или двоичную тетраду

Знак числа обычно кодируется двоичной цифрой, при этом 0 означает + (плюс), код 1 – знак минус (минус).

Сложение двоичных чисел

$$11101_2 => 1*2^4 + 1*2^3 + 1*2^2 + 1*2^0 = 27_{10}$$

$$+ 111_2 => 1*2^2 + 1*2^1 + 1*2^0 = 7_{10}$$

$$100100 \Rightarrow 1*2^5 + 1*2^2 = 34_{10}$$

Вычитание двоичных чисел

■
$$100100 \Rightarrow 1*2^5 + 1*2^2 = 34_{10}$$
■ $-111_2 \Rightarrow 1*2^2 + 1*2^1 + 1*2^0 = 7_{10}$

$$11101_2 = >1*2^4 + 1*2^3 + 1*2^2 + 1*2^0 = 27_{10}$$

Двоичное умножение

- A). Формирование первого частного произведения. Если значение младшего значащего разряда множителя равно 0, то и результат равен 0, если значение этого разряда равно 1, то результат является копией множимого.
- Б). Правило сдвига. При использовании очередного разряда множителя для формирования частного произведения производится сдвиг множимого на один разряд (позицию) влево.
- В). Правило сложения. Каждый раз, когда значение разряда множителя равно 1, к результату необходимо прибавить множимое, расположенное в позиции, определенной правилом сдвига.
- Г). Определение результирующего произведения. Искомое произведение есть результат выполнения всех операций сдвига и сложения.

Умножение двоичных чисел

$$111_2 = >1*2^2 + 1*2^1 + 1*2^0 = 7_{10}$$

$$\bullet$$
 * $101_2^2 = >1*2^2 + 1*2^0 = 5_{10}$

111

 ± 111

$$100011_2 = > 1*2^5 + 1*2^1 + 1*2^0 = 35_{10}$$

Деление двоичных чисел

100011 ₂	101 ₂
101	111 ₂
111	2
101	
101	

101

Логические основы

Логической основой вычислительной техники является алгебра высказываний или булева алгебра. Она имеет свои законы, тождества и аксиомы. Разработана алгебра логики была Джорджем Булем в середине 19 века и названа в его честь.

Алгебра логики — это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1.

Алгебра логики оперирует с логическими высказываниями

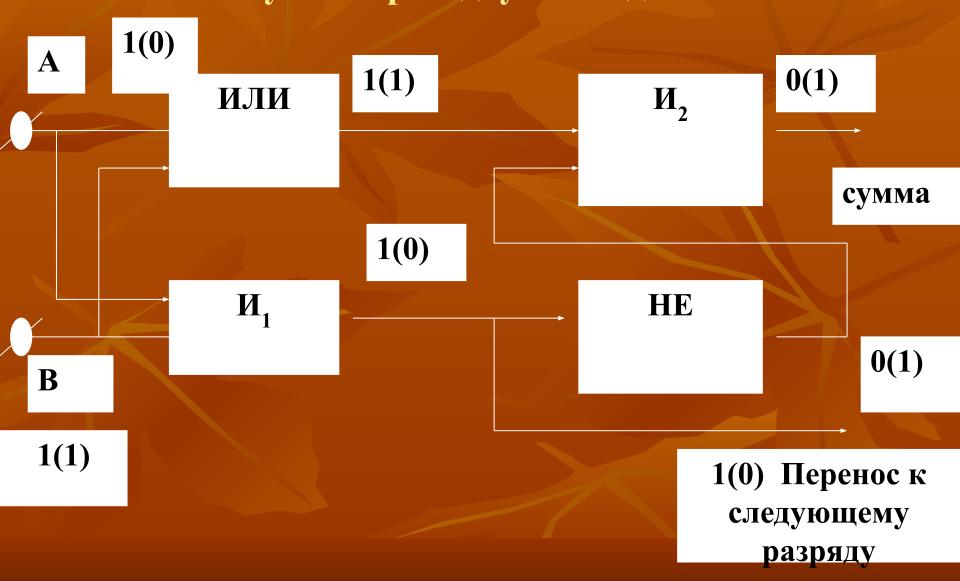
Высказывание

- это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности.
- Логическое отрицание (инверсия) НЕ;
- Логическое сложение (дизъюнкция) ИЛИ (+,v);
- Логическое умножение (конъюнкция) И (^,*);
- Функция Вебба (отрицание дизъюнкции) ИЛИ-НЕ;
- Функция Шеффера (отрицание конъюнкции) И-НЕ;
- Импликация операция, связанная связками «если ..., то» →;
- Эквиваленция операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «равносильно...» \leftrightarrow или \square
- Сложение по модулю 2 (М2).

Импликация, выраженная через дизъюнкцию и отрицание ____

$$A \rightarrow B =$$

$$A \rightarrow B = A \vee B$$


Эквиваленция, выраженная через отрицание, дизьюнкцию и конъюнкцию

$$A \longleftrightarrow B = (\overline{A} \lor B) \cdot (\overline{B} \lor A)$$

Физической моделью операции «И» является последовательное включение двух транзисторов в цепи. Цепь замкнута при работе обоих транзисторов.

Физической моделью операции «ИЛИ» является параллельное включение двух транзисторов в цепи.

Логическая схема одноразрядного двоичного сумматора с двумя входами

Основные законы алгебры логики

3. 300 AW 12. (- 3. 7.			
Закон¤	Для•ИЛИО	Для:Ио	
Переместительный□	x/v=v/xo	x*y=y*x¤	
Сочетательный¤	$x\sqrt{(y\sqrt{z})}=(x\sqrt{y})\sqrt{z}$	(x*y)*z=x*(y*z)¤	
Распределительный¤	x*(y√z)=x*y√x*z¤	$x\sqrt{y}z=(x\sqrt{y})x(x\sqrt{z})Q$	
Правила•де•Моргана¤	-(x√y)=-x*-y¤	-(x*y)=-x√-y¤	
ИдемпотенцииO	x√x=x¤	x*x=x0	
Поглощения□	x√x*y=x¤	x*(x√y)=x¤	
Склеивания¤	(x*y)√(.~x*y)=y¤	(x√y)*(·¬x√y)=y¤	
Операция•переменной•с•ее• инверсией©	x √ −x=1¤	x*-x=0¤	
Операция∙с•константами□	x√0=x;·····x√1=1¤	x*1=x;····x*0=0¤	
Двойного•отрицания¤	¬(¬x)=x¤		