
Лекция 8

Windows Forms

Base Class Libraries в .NET Framework
поставляет большое количество
классов для создания приложений,
работающих в оконном режиме
(forms-based windows applications).

Working with Windows and Forms
• Most operating systems today use event-driven

programming and forms to interact with users. If you
have done development for Microsoft Windows, you
most likely used a set of routines within the Win32
libraries that helped you to create windows and forms.

• Yesterday you learned about the Base Class Libraries
(BCL). Within the BCL is a set of classes for doing similar
windows forms development. The benefit of the base
classes is that they can be used by any of the
programming languages within the framework.

• Additionally, they have been created to make developing
forms-based applications simple.

• Additionally, as the .NET Framework and runtime are
ported to other platforms, your forms based applications
will also port.

Создание окна (Forms)

• Создавая Windows-приложение, необходимо
создать класс – наследник класса Form.

• Класс Form расположен внутри пространства
имен System.Windows.Forms, поэтому
необходимо использовать оператор

• using System.Windows.Forms;

• Следующий код иллюстрирует создание
простейшей программы, создающей окно:

FirstFrm.cs — простейшая оконная
программа

1: // FirstFrm.cs - A super simplistic windows form application
2: //--
3:
4: using System.Windows.Forms;
5:
6: public class FirstFrm : Form
7: {
8: public static void Main(string[] args)
9: {
10: FirstFrm frmHello = new FirstFrm();
11: Application.Run(frmHello);
12: }
13: }

Analyzing Your First Windows Form
Application

Now that you can compile and execute a windows
form application, you should begin understanding
the code.

Look back at the code in Listing 16.1.
In Line 4, the listing uses the

System.Windows.Forms namespace, which
enables the Form and Application class names to
be shortened. In Line 6, this application is in a
class named FirstFrm.

The new class you are creating inherits from the
Form class, which provides all the basic
functionality of a windows form.

• With the single line of code (Line 6), you have actually
created the form’s applicationclass.

• In Line 10, you instantiate an object from this class.
• In Line 11, you call the Run method of the Application

class. This is covered in more detail in a moment. For
now, know that it causes the application to display the
form and keep running until you close the form.

• You could call the Show method of the Form class
instead by replacing Line 11 with the following:

• frmHello.Show();

• Although this seems more straightforward, you will find
that the application ends with a flaw. When using the
Show method, the program shows the form and then
moves on to the next line, which is the end of the
program. Because the end of the program is reached, the
processing ends and the form closes. This is not the result
you want. The Application class gets around this problem.

Understanding the Application.Run
Method

• A Windows application is an event-driven
program that generally displays a form containing
controls. The program then spins in a loop until
the user does something on the form or within
the windowed environment. Messages are
created whenever something occurs.

• These messages cause an event to occur. If
there is an event handler for a given message, it
is executed. If there is not, the loop continues.

Отображение
формы

Запуск цикла сообщений

• As you can see, the loop never seems to end.
Actually, an event can end the program.

• The basic form that you inherit from (Form) includes
the close control as well as a Close item in the
Command menu. These controls can kick off an
event that closes the form and ends the loop.

• By now you should be guessing what the Application
class does for you—or, more specifically, what the
Application class’s Run method does for you. The
Run method takes care of creating the loop and
keeping the program running until an event that ends
the program loop is executed. In the case of Listing
16.1, selecting the Close button on the form or
selecting the Close option on the command menu
causes an event to be fired that ends the loop and
thus closes the form.

• The Application.Run method also displays a form
for you. Line 11 of Listing 16.1 receives a form
object—frmHello. This is an object derived from
the Form class (see Line 6 of Listing 16.1).

• The Application.Run method displays this form
and then loops.

• The loop created by the Application class’s Run
method actually processes messages that are
created. These messages can be created by the
operating system, your application, or other
applications that are running. The loop
processes these methods.

• For example, when you click a button, a
number of messages are created. This
includes messages for a mouse down, a
mouse up, a button click, and more. If a
message matches with an event handler,
the event handler is executed. If no event
handler is defined, the message is
ignored.

Customizing a Form

In the previous listing, you saw a basic form
presented. A number of properties, methods,

and events are associated with the Form
class—too many to cover in this book.

However, it is worth touching on a few of them.
You can check the online documentation for a

complete accounting of all the functionality
available with this class.

Customizing the Caption Bar on
a Form

Listing 16.1 presented a basic, blank form. The
next few listings continue to work with this blank
form; however, with each listing in today’s
lesson, you learn to take a little more control of
the form.

The form from Listing 16.1 comes with a number of
items already available, including the control
menu and the Minimize, Maximize, and Close
buttons on the title bar. You can control whether
these features are on or off with your forms by
setting properties:

Includes the caption for the formText

Indicates whether the Minimize
button is included.

MinimizeBox

Indicates whether the Maximum
button is included.

MaximizeBox

Indicates whether a help button
is displayed on the caption of the

form. This is displayed only if
both the MaximizeBox and

MinimizeBox values are false.

HelpButton

Determines whether the control
box is displayed.

ControlBox

Some of these values impact others. For example,
the HelpButton displays only if both the
MaximizeBox and MinimizeBox properties are
false (turned off).

Listing 16.2 gives you a short listing that enables
you to play with these values; Figure 16.4 shows
the output.

FormApp.cs—Sizing a Form

• 1: // FormApp.cs - Caption Bar properties
• 2: //--
• 3:
• 4: using System.Windows.Forms;
• 5:
• 6: public class FormApp : Form
• 7: {
• 8: public static void Main(string[] args)
• 9: {

• 10: FormApp frmHello = new FormApp();
• 11:
• 12: // Caption bar properties
• 13: frmHello.MinimizeBox = true;
• 14: frmHello.MaximizeBox = false;
• 15: frmHello.HelpButton = true;
• 16: frmHello.ControlBox = true;
• 17: frmHello.Text = @”My Form’s Caption”;
• 18:
• 19: Application.Run(frmHello);
• 20: }
• 21: }

• This listing is easy to follow. In Line 6, a new
class is created named FormApp that inherits
from the Form class. In Line 10, a new form
object is instantiated from the Application class.
This form has a number of values set in Lines
13–17 that change items on the caption bar. In
Line 19, the Run method of the Application class
is called to display the form. You should look at
the output in Figure 16.4. Both the Maximize and
Minimize buttons are displayed; however, the
Maximize button is inactive. This is because you
set it to false in Line 14. If you set both values to
false, neither button shows.

• You should also notice that the Help button is
turned to true in Line 15. The Help button
displays only if both the Minimize and Maximize
buttons are turned off (false). This means that
Line 15 is ignored. Change the property in Line
13 so that the resulting properties in Lines 14–16
are as follows:

• 13: frmHello.MinimizeBox = false;
• 14: frmHello.MaximizeBox = false;
• 15: frmHello.HelpButton = true;
• 16: frmHello.ControlBox = true;

• As you can see, the output reflects the values
that have been set.

• One additional combination is worth noting.
When you set ControlBox to false, the Close
button and the control box are both hidden.
Additionally, if ControlBox, MinimizeBox, and
MaximizeBox are all set to false and if there is
no text for the caption, the caption bar
disappears.

• Remove Line 17 from Listing 16.2 and set the
values for the properties in Lines 13–16 to false.
Recompile and run the program. The output you
receive is displayed in Figure 16.6.

• You might wonder why you would want to
remove the caption bar. One possible reason is
to display a splash screen. You’ll learn more
about creating a splash screen later.

The protected property that sets the default
size of the form.

DefaultSize

The size of the client area of the form.ClientSize

The location of the autoscroll position.AutoScroll
Position

The minimum size of the autoscroll.AutoScroll
MinSize

The size of the margin for the autoscroll.AutoScroll
Margin

The form has the automatic capability of
scrolling.

AutoScroll

The base size used for autoscaling the
form.

AutoScale
BaseSize

The form automatically adjusts itself, based
on the font or controls used on it.

AutoScale

The size and location of the form.DesktopBounds
The location of the form.DesktopLocation
The height of the formHeight

The width of the form.Width

The style of the size grip used on the form.
A value from the SizeGripStyle
enumerator. Values are Auto
(automatically displayed when needed),
Hide (hidden), or Show (always shown).

SizeGripStyle

The size of the form. set or get a Size
object that contains an x, y value.

Size

The minimum size for the form.MinimizeSize

The maximum size for the form.MaximizeSize

The starting position of the form. This
is a value from the FormStartPosition
enumerator. Possible FormStartPosition
enumeration

values are CenterParent (centered
within the parent form), CenterScreen
(centered in the current display screen),
Manual (location and size determined by
starting position),
WindowsDefaultBounds (positioned

at the default location), and
WindowsDefaultLocation (positioned

at the default location, with
dimensions based on specified values
for the size).

StartPosition

• 1: // FormSize.cs - Form Size
• 2: //---
• 3:
• 4: using System.Windows.Forms;
• 5: using System.Drawing;
• 6:
• 7: public class FormSize : Form
• 8: {
• 9: public static void Main(string[] args)
• 10: {
• 11: FormSize myForm = new FormSize();
• 12: myForm.Text = “Form Sizing”;

• 13:
• 14: myForm.Width = 400;
• 15: myForm.Height = 100;
• 16:
• 17: Point FormLoc = new Point(200,350);
• 18: myForm.StartPosition =

FormStartPosition.Manual;
• 19: myForm.DesktopLocation = FormLoc;
• 20:
• 21: Application.Run(myForm);
• 22: }
• 23: }

• Setting the size of a form is simple. Lines 14–15
set the size of the form in Listing 16.3. As you
can see, the Width and Height properties can be
set. You can also set both of these at the same
time by using a Size object.

• Positioning the form takes a little more effort. In
Line 17, a Point object is created that contains
the location on the screen where you want the
form positioned. This is then

• used in Line 19 by applying it to the
DesktopLocation property. To use the Point
object without fully qualifying its name, you need
to include the System.Drawing namespace, as in
Line 5.

• In Line 18, you see that an additional property has been
set. If you leave out Line 18,you will not get the results
you want. You must set the starting position for the form
by setting the StartPosition property to a value in the
FormStartPosition enumerator.

• Table 16.1 contained the possible values for this
enumerator. You should note the other values for
FormStartPosition. If you want to center a form on the
screen, you can replace Lines 17–19 with one line:

• myForm.StartPosition =
FormStartPosition.CenterScreen;

• This single line of code takes care of centering the form
on the screen, regardless of the screen’s resolution.

Changing the Colors and Background of
a Form

• Working with the background color of a form
requires setting the BackColor property to a color
value. The color values can be taken from the
Color structure located in the System.Drawing
namespace.

• myForm.BackColor = Color.HotPink;

• Of equal value to setting the form’s color is
placing a background image on the form. An

• image can be set into the form’s
BackgroundImage property. The image placed is
passed as a parameter to the program.

• 1: // PicForm.cs - Form Backgrounds
• 2: //--
• 3:
• 4: using System.Windows.Forms;
• 5: using System.Drawing;
• 6:
• 7: public class PicForm : Form
• 8: {
• 9: public static void Main(string[] args)
• 10: {
• 11: PicForm myForm = new PicForm();
• 12: myForm.BackColor = Color.HotPink;
• 13: myForm.Text = “PicForm - Backgrounds”;
• 14:

• 15: if (args.Length >= 1)
• 16: {
• 17: myForm.BackgroundImage =

Image.FromFile(args[0]);
• 18:
• 19: Size tmpSize = new Size();
• 20: tmpSize.Width =

myForm.BackgroundImage.Width;
• 21: tmpSize.Height =

myForm.BackgroundImage.Height;
• 22: myForm.ClientSize = tmpSize;
• 24: myForm.Text = “PicForm - “ + args[0];
• 25: }
• 26: Application.Run(myForm);
• 27: } }

• This program presents an image on the form
background. This image is provided on the
command line. If no image is entered on the
command line, the background color is set to Hot
Pink. I ran the listing using a picture of my
nephews. I entered this command line:

• PicForm pict1.jpg

• pict1.jpg was in the same directory as the
PicForm executable. If it were in a different
directory, I would have needed to enter the full
path. You can pass a different image, as long as
the path is valid. If you enter an invalid filename,
you get an exception.

• Looking at the listing, you can see that creating an
application to display images is extremely easy. The
framework classes take care of all the difficult work
for you. In Line 12, the background color was set to
be Hot Pink. This is done by setting the form’s
BackColor property with a color value from the Color
structure.

• In Line 15, a check is done to see whether a value
was included on the command line. If a value was not
included, Lines 17–24 are skipped and the form is
displayed with a hot pink background. If a value was
entered, this program makes the assumption (which
your

• programs should not do) that the parameter passed
was a valid graphics file. This file is then set into the
BackgroundImage property of the form.

• The filename needs to be converted to an actual
image for the background by using the Image class.
More specifically, the Image class includes a static
method, FromFile, that takes a filename as an
argument and returns an Image. This is exactly what is
needed for this listing.

• The BackgroundImage property holds an Image value.
Because of this, properties and methods from the
Image class can be used on this property. The Image
class includes Width and Height properties that are
equal to the width and height of the image contained.

• Lines 20–21 use these values to a temporary Size
variable that, in turn, is assigned to the form’s client
size in Line 22. The size of the form’s client area is set
to the same size as the image. The end result is that
the form displayed always displays the full image. If
you don’t do this, you will see either only part of the
image or tiled copies of the image.

