
Programming on Algorithmic
Languages

Week 1

1.1 General Notes About C++ and This
Course
� Course geared toward novice programmers

▪ Stress programming clarity
▪ C and C++ are portable languages

� Portability
▪ C and C++ programs can run on many different

computers

� Compatibility
▪ Many features of current versions of C++ not

compatible with older implementations

2

1.1 General Notes About C++ and This
Course

� What do you need?
▪ Books:

▪ C++ How to Program, Fifth (fourth) Edition By H. M. Deitel - Deitel
& Associates
▪ C++A Beginner’s Guide By Herbert Schildt
▪ Absolute C++ By Walter Savitch

▪ IDE:
▪ Microsoft Visual C++ 2008 (Express or Professional editions)

▪ Sites:
▪ http://cplusplus.com/
▪ http://e-practice.org
▪ http://www.iitu.kz/

▪ Your Mind (Brain)

1.2 Introduction to C++
Programming

� C++ language
▪ Facilitates structured and disciplined

approach to computer program design

� Following several examples
▪ Illustrate many important features of C++

▪ Each analyzed one statement at a time

� Structured programming

� Object-oriented programming
4

1.3 Basics of a Typical C++
Environment

� C++ systems
▪ Program-development environment

▪ Language

▪ C++ Standard Library

5

1.3 Basics of a Typical C++
Environment

6

Phases of C++ Programs:
1. Edit
2. Preprocess
3. Compile
4. Link
5. Load
6. Execute

Primary
Memory

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

CPU

.

.

.

.

.

.

Program is created in
the editor and stored
on disk.

Editor Disk

Preprocessor program
processes the code.

Preprocessor Disk

Compiler
Compiler creates
object code and stores
it on disk.

Disk

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Linker Disk

Loader

Primary
Memory

Loader puts program
in memory.

.

.

.

.

.

.

Disk

1.3 Basics of a Typical C++
Environment

� Input/output
▪ cin
▪ Standard input stream

▪ Normally keyboard

▪ cout
▪ Standard output stream

▪ Normally computer screen

▪ cerr
▪ Standard error stream

▪ Display error messages 7

1.3 A Simple Program:
Printing a Line of Text

� Comments
▪ Document programs

▪ Improve program readability

▪ Ignored by compiler

▪ Single-line comment
▪ Begin with //

� Preprocessor directives
▪ Processed by preprocessor before compiling

▪ Begin with #
8

9

� 1 // Fig. 1.2: fig01_02.cpp
� 2 // A first program in C++.
� 3 #include <iostream>
� 4
� 5 // function main begins program execution
� 6 int main()
� 7 {
� 8 std::cout << "Welcome to C++!\n";
� 9
� 10 return 0; // indicate that program ended successfully
� 11
� 12 } // end function main

Welcome to C++!

Single-line
comments.

Preprocessor directive to
include input/output
stream header file
<iostream>.

Function main appears
exactly once in every C++
program..

Function main returns an
integer value.
Left brace { begins
function body.

Corresponding right brace
} ends function body.

Statements end with a
semicolon ;.

Name cout belongs to
namespace std.

Stream insertion operator.

Keyword return is one
of several means to exit
function; value 0 indicates
program terminated
successfully.

1.31 A Simple Program:
Printing a Line of Text

� Standard output stream object
▪ std::cout
▪ “Connected” to screen
▪ <<

▪ Stream insertion operator
▪ Value to right (right operand) inserted into output stream

� Namespace
▪ std:: specifies using name that belongs to

“namespace” std
▪ std:: removed through use of using statements

� Escape characters
▪ \
▪ Indicates “special” character output

10

1.31 A Simple Program:
Printing a Line of Text

11

12

� 1 // Fig. 1.4: fig01_04.cpp
� 2 // Printing a line with multiple statements.
� 3 #include <iostream>
� 4
� 5 // function main begins program execution
� 6 int main()
� 7 {
� 8 std::cout << "Welcome ";
� 9 std::cout << "to C++!\n";
� 10
� 11 return 0; // indicate that program ended successfully
� 12
� 13 } // end function main

Welcome to C++!

Multiple stream insertion
statements produce one
line of output.

13

� 1 // Fig. 1.5: fig01_05.cpp
� 2 // Printing multiple lines with a single statement
� 3 #include <iostream>
� 4
� 5 // function main begins program execution
� 6 int main()
� 7 {
� 8 std::cout << "Welcome\nto\n\nC++!\n";
� 9
� 10 return 0; // indicate that program ended successfully
� 11
� 12 } // end function main

Welcome

to

C++!

Using newline characters
to print on multiple lines.

1.4 Variables

� Variables
▪ Location in memory where value can be stored
▪ Common data types

▪ int - integer numbers
▪ char - characters
▪ double - floating point numbers

▪ Declare variables with name and data type before use
int integer1;
int integer2;
int sum;

▪ Can declare several variables of same type in one
declaration
▪ Comma-separated list
int integer1, integer2, sum;

14

� Variables
▪ Variable names
▪ Valid identifier

▪ Series of characters (letters, digits, underscores)

▪ Cannot begin with digit

▪ Case sensitive

15

1.4 Variables

1.5 Memory Concepts

� Variable names
▪ Correspond to actual locations in computer's

memory
▪ Every variable has name, type, size and value
▪ When new value placed into variable, overwrites

previous value
▪ Reading variables from memory nondestructive

16

1.5 Memory Concepts

std::cin >> integer1;

▪ Assume user entered 45

std::cin >> integer2;

▪ Assume user entered 72

sum = integer1 + integer2;

17

integer1 45

integer1 45

integer2 72

integer1 45

integer2 72

sum 11
7

1.6 Data types

C and C++ have four basic built-in data types,
described here for binary-based machines.
▪ char is for character storage and uses a minimum

of 8 bits (one byte) of storage, although it may
be larger.
▪ int stores an integral number and uses a minimum

of two bytes of storage.
▪ The float and double types store floating-point

numbers, usually in IEEE floating-point format.
float is for single precision floating point and
double is for double-precision floating point.

18

1.6 Data types

19

1.6 Data types

Specifiers

Specifiers modify the meanings of the basic
built-in types and expand them to a much
larger set. There are four specifiers:
▪ Long

▪ Short

▪ Signed

▪ Unsigned
20

modify the maximum and
minimum values that a data type

will hold.

tell the compiler how to use the
sign bit with integral types and

characters (floating-point
numbers always contain a sign).

1.6 Data types
� The exact sizes and ranges of values for the

fundamental types are implementation
dependent.

� The range of values a type supports depends
on the number of bytes that are used to
represent that type.
▪ Consider a system with 4 byte (32 bits) ints.

▪ signed int type, the nonnegative values are in the
range 0 to 2,147,483,647 (231 1).
▪ signed int type, the negative values are in the range 1

to 2,147,483,648 (231).
▪ unsigned int on the same system would use the same

number of bits to represent data, but would not
represent any negative values. 21

This is a total of 232
possible values

values in the range 0
to 4,294,967,295
(232 1)

1.6 C++ Data Types

The guaranteed

minimum range for

each type as

specified by the

ANSI/ISO C++

standard

22

1. C++ Data Types

23

60,000 is within the range of an
unsigned short int, but is typically outside
the range of a signed short int . Thus, it
will be interpreted as a negative value
when assigned to i.

1.7 Arithmetic

� Arithmetic calculations
▪ *
▪ Multiplication

▪ /
▪ Division

▪ Integer division truncates remainder
▪ 7 / 5 evaluates to 1

▪ %
▪ Modulus operator returns remainder

▪ 7 % 5 evaluates to 2
24

1.7 Arithmetic
� Rules of operator precedence

▪ Operators in parentheses evaluated first
▪ Nested/embedded parentheses

▪ Operators in innermost pair first

▪ Multiplication, division, modulus applied next
▪ Operators applied from left to right

▪ Addition, subtraction applied last
▪ Operators applied from left to right

25

1.7 Arithmetic

26

1.8 Decision Making: Equality and
Relational Operators

� if structure
▪ Make decision based on truth or falsity of condition
▪ If condition met, body executed

▪ Else, body not executed

� Equality and relational operators
▪ Equality operators
▪ Same level of precedence

▪ Relational operators
▪ Same level of precedence

▪ Associate left to right 27

1.8 Decision Making: Equality and
Relational Operators

28

� 1 //
� 2 // Using if statements, relational
� 3 // operators, and equality operators.
� 4 #include <iostream>
� 5
� 6 using std::cout; // program uses cout
� 7 using std::cin; // program uses cin
� 8 using std::endl; // program uses endl
� 9
� 10 // function main begins program execution
� 11 int main()
� 12 {
� 13 int num1; // first number to be read from user
� 14 int num2; // second number to be read from user
� 15
� 16 cout << "Enter two integers, and I will tell you\n"
� 17 << "the relationships they satisfy: ";
� 18 cin >> num1 >> num2; // read two integers
� 19
� 20 if (num1 == num2)
� 21 cout << num1 << " is equal to " << num2 << endl;
� 22
� 23 if (num1 != num2)
� 24 cout << num1 << " is not equal to " << num2 << endl;
� 25

using statements
eliminate need for std::
prefix.

Can write cout and cin
without std:: prefix.

Declare variables.

if structure compares
values of num1 and num2
to test for equality.

If condition is true (i.e.,
values are equal), execute
this statement.

if structure compares
values of num1 and num2
to test for inequality.

If condition is true (i.e.,
values are not equal),
execute this statement.29

30

� 26 if (num1 < num2)
� 27 cout << num1 << " is less than " << num2 << endl;
� 28
� 29 if (num1 > num2)
� 30 cout << num1 << " is greater than " << num2 << endl;
� 31
� 32 if (num1 <= num2)
� 33 cout << num1 << " is less than or equal to "
� 34 << num2 << endl;
� 35
� 36 if (num1 >= num2)
� 37 cout << num1 << " is greater than or equal to "
� 38 << num2 << endl;
� 39
� 40 return 0; // indicate that program ended successfully
� 41
� 42 } // end function main

Statements may be split
over several lines.

31

Enter two integers, and I will tell you

the relationships they satisfy: 7 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

Enter two integers, and I will tell you

the relationships they satisfy: 22 12

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Readings:

� C++ How to Program, By H. M. Deitel
▪ Chapter 1. Introduction to Computers, the Internet

and World Wide Web

▪ Chapter 2. Introduction to C++ Programming

33

Thanks for your
attention!

