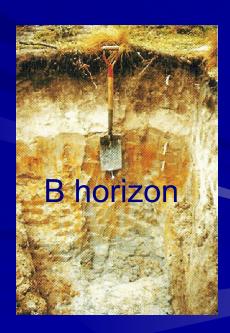

Soil Morphology and Classification

Master Horizons


Enough information?

O horizon

Sub-horizon designations

Sub-horizon designations

Subordinate distinctions within master horizons

- p plowing/disturbance
- t clay accumulation
- g gleying
- h illuvial organic matter
- w development of color/structure
- o oxic

Subordinate distinction (p = plowed)

Disturbed surface horizon (cultivation, pasture, forestry) Used with the A master horizon (e.g. Ap horizon)

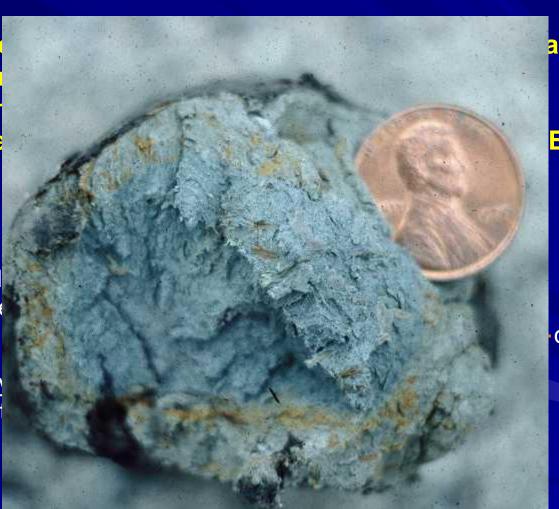
——Ap horizon

Subordinate distinction (t = clay accumulation)

Translocation of clay or formed in place
Coatings or discrete
Used with the B master horizon (e.g. Bt)
If reduced, can be used with the g sub horizon (Btg)

Subordinate distinction (g = gleying)

Oxygen de


Reduction

low chror

Often use

Fe³⁺ oxid

Fe²⁺ gley

ation.

E and C horizon.

oxidized

Subordinate distinction (h = organic accumulation)

- Accumulation of illuvial organic matter-metal complexes
- Coatings on sand and discrete particles
- h = "humic"
- value and chroma approximately 3 or less
- Used with the B master horizon (e.g. Bh horizon)

Bh horizon "spodic horizon"

Subordinate distinction (w = color or stucture)

Non-illuvial development of color or structure "w" can = "weak"

Commonly used with the B master horizon (e.g. Bw)

Subordinate distinction (o = oxic horizon)

Low activity clays
Few weatherable materials
Little rock structure
Fe and Al oxides

Subordinate distinctions

- g gleying
- h illuvial organic matter
- p plowing/disturbance
- t clay accumulation
- w development of color/structure
- o oxic

Subordinate distinction (a, e, i)

Denotes the degree of organic matter decomposition in the O horizon.

Oa – highly decomposed (sapric)

Oe – moderately decomposed (hemic)

Oi – slightly decomposed (fibric)

Sapric –most decomposed, low plant fiber, low water content Hemic – intermediate decompostion Fibric – least decomposed, recognizable fibers

Summary

Master: O, A, E, B, C, R

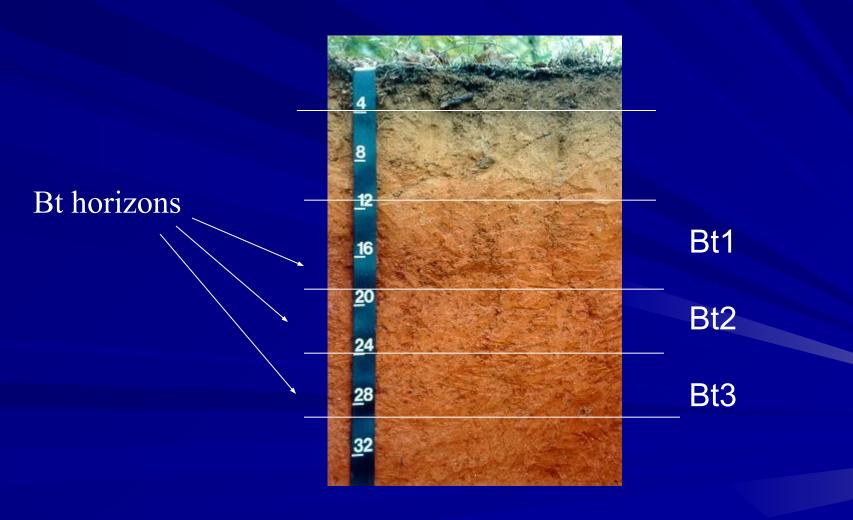
Sub horizon symbols: g, h, p, t, w and a,e,i

Examples: Oa, Oe, Oi

Bt

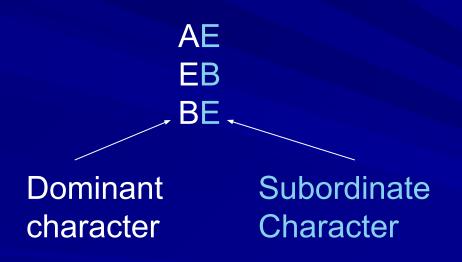
Bg

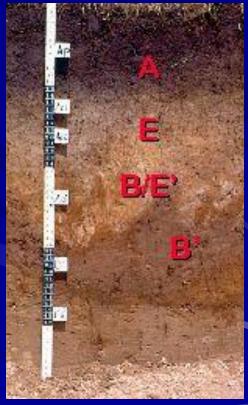
Btg


Bw

Ap

Other Designations


Vertical Subdivisions


Characterized by similar master and/or subordinate properties separated by "degree".

Transitional Horizons

Transitional layers between master horizons.

Synthesis

Ap

ΑE

E

Bh

Btg1

Btg2

Soil Taxonomy

Soil Classification/Taxonomy

Hierarchical

Based on soil profile characteristics and the concept of soils as a natural body.

Observable properties: color, texture, structure, pH, O.M...

Soil Profile

Genesis

1883 V.V. Dukachaev: climate, vegetation, soil

1927 C.F. Marbut (USDA) applied to U.S. (1965)

Soil Classification/Taxonomy

USDA classification system

Soil Survey Staff 1965

Soil Taxonomy published 1975

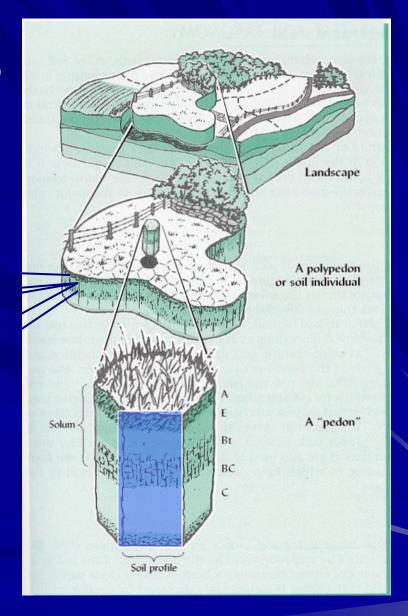
Adamsville: Hyperthermic, uncoated Aquic Quartzipsamment

Soil Taxonomy Hierarchy

Kingdom Phylum Class Order Family Genus Species

Units for Soil Classification

Pedon – smallest three-dimensional unit that displays the full range of properties characteristic of a given soil. (1-10 m² of area)


- the fundamental unit of soil classification

Polypedon – group of closely associated pedons in the field

Soil Series – class of soils world-wide which share a common suite of soil profile properties

Soil Sampling Units

Malabar Series

Diagnostic Horizons

Surface

Subsurface

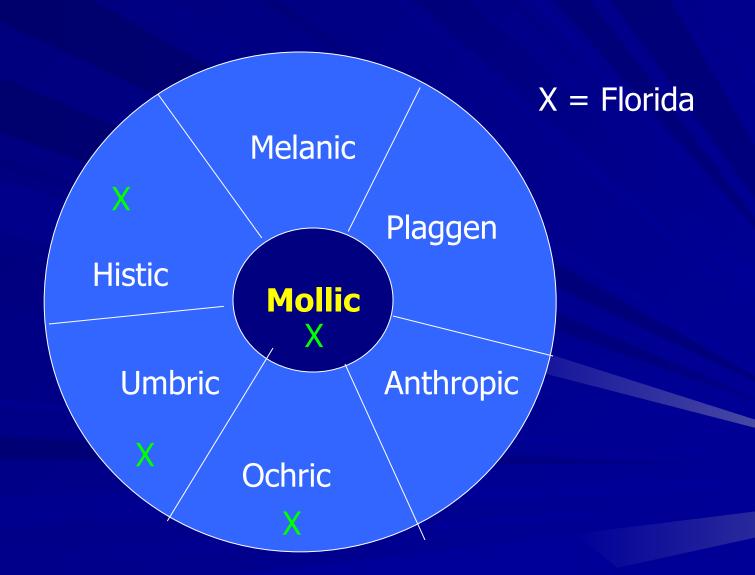
Diagnostic Surface Horizons

Epipedons

Mollic

Umbric

Ochric


Histic

Melanic

Plaggen

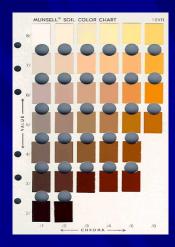
Anthropic

Diagnostic Surface Horizons

Mollic Epipedon

Thickness > 18-25 cm

Color value < 3.5 moist


chroma < 3.5 moist

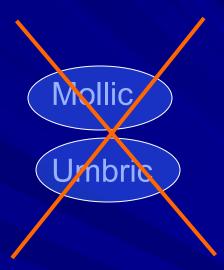
Organic Carbon > 0.6 %

Base Saturation > 50 %

Structure strongly developed

Organic carbon = organic matter x 0.5

<u>Umbric Epipedon</u>


Meets all criteria of the Mollic epipedon, except base saturation < 50%

Chemically different than Mollic

Ochric Epipedon

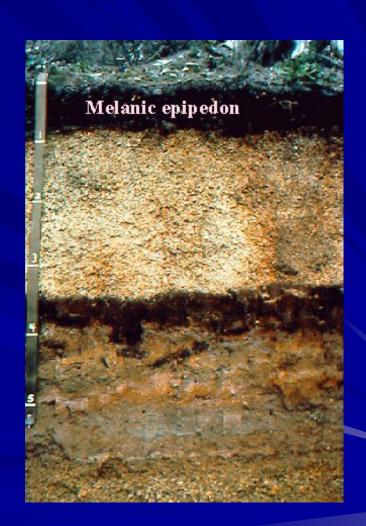
Too: thin light low in O.M

Ochric = pale

Extremely common

Histic Epipedon

Organic horizon
Formed in wet areas
Black to dark brown
Low bulk density
20-30 cm thick


Organic = > 20% - 35% O.M. (water saturation, clay content)

Melanic Epipedon

Similar in properties to Mollic

Formed in volcanic ash

Lightweight, Fluffy

Anthropic Horizon

- Resembles mollic (color, o.m.)
- Use by humans
- Shells and bones
- Water from humans

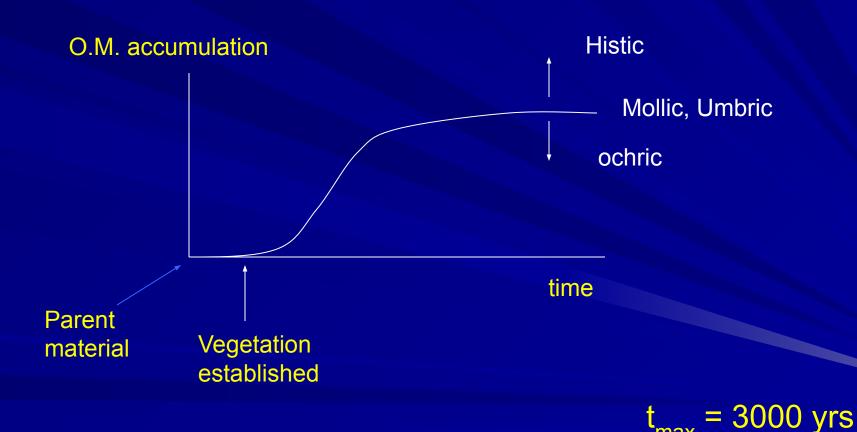
Plaggen Epipedon

Produced by long-term (100s yrs.) manuring

Old, human-made surface horizon

Absent in U.S.

> 50 cm thick



Diagnostic Surface Horizons

Epipedons

Mollic	
Umbric	Very common
Ochric	
Histic	"specialized"
Melanic	
Plaggen	
Anthropic	Human-derived

Organic Matter Accumulation

Formation
Translocation
Transformation

Clays Organic Matter Oxides

Subsurface Horizons

Formation
Translocation
Transformation

Organic Matter

Dark colors Metals (Fe, AI)

 $\begin{array}{c} \text{CO} \\ \text{OC} \\ \text{OC} \\ \text{CH}_2 \\ \text{OC} \\ \text{CH}_2 \\ \text{CO} \\ \text{CH}_2 \\ \text{CO} \\ \text{(B)} \end{array}$

Clays

smectites

Kaolinite

Oxides

Iron Aluminum

Also: salts, carbonates, sulfides

Albic

Argillic

Spodic

Oxic

Cambic

Kandic

Sombric

sulfuric

Natric

Agric

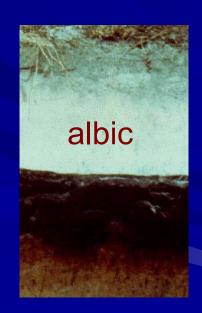
Calcic

Gypsic

Salic

Duripan

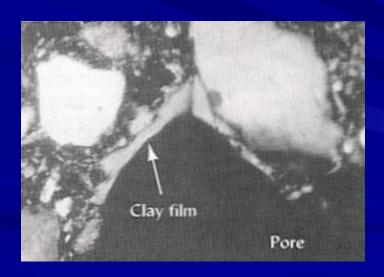
Fragipan


Placic

Sub-Horizon Designations

Albic (white) Horizon

Light-colored (Value > 6 moist)
Elluvial (E master horizon*)
Low in clay, Fe and Al oxides
Generally sandy textured
Low chemical reactivity (low CEC)
Typically overlies Bh or Bt horizons


*not all E horizons are albic horizons

Argillic Horizon

Illuvial accumulation of silicate clays
Illuvial based on overlying horizon
Clay bridges
Clay coatings

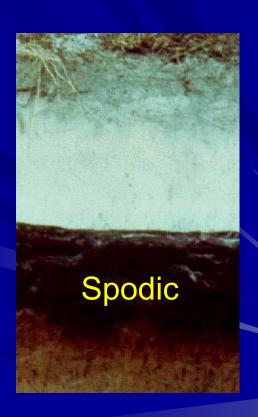
Argillic Horizon

Kandic Horizon

High

Activity of Clays

Low


Necessary

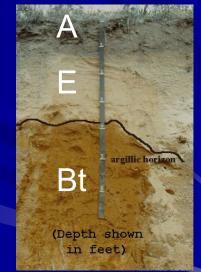
Illuviation of clay

Not Necessary

Spodic Horizon

- Illuvial accumulation of organic matter and aluminum (+/- iron)
- Dark colored (value, chroma < 3)
- Low base saturation (acidic)
- Formed under humid acid conditions

Elluviation and Illuviation


Elluviation (E horizon)

Organic matter Clays Bh horizon Spodic horizon

Bt horizon

Argillic horizon

Diagnostic Subsurface Oxic horizon Horizons

- Highly weathered (high temperatures, high rainfall)
 - High in Fe, Al oxides
 - High in low-activity clays (kaolinite < smectite < vermiculite)

activity

Diagnostic Horizons

Epipedons

Mollic

Umbric

Ochric

Histic

Melanic

Plaggen

Anthropic

Subsurface

Albic

Kandic

Argillic

Spodic

Oxic

Soil Taxonomy

Diagnostic Epipedons
Diagnostic Subsurface horizons
Moisture Regimes
Temperature Regimes