Кафедра ВЭПТ

«Основы физики поверхности и тонких пленок»

Лекция 7

Тема: Электронные свойства поверхности

- Функционал плотности.
- Модель желе.
- Поверхностные состояния.
- Электронная структура поверхности.
- Поверхностная проводимость.
- Эмиссия электронов и работа выхода.
- Взрывная эмиссия.

Функционал плотности.

Теория функционала плотности основывается на теореме, сформулированной Хохенбергом и Коном, которая гласит, что полная энергия системы (например, кристалла или его поверхности) полностью определяется распределением электронной плотности n(r) в его основном состоянии. Более того, можно определить функционал энергии E = E[n(r)], обладающий тем свойством, что он имеет минимум, когда n(r) соответствует распределению плотности в основном состоянии.

Обычно E[n(r)] представляют в виде суммы трех членов: кинетической энергии *T*, электростатической (или кулоновской) энергии *U* и обменно-корреляционного члена E_{xc} : $E[n(r)] = T + U + E_{xc}$. Распределение электронной плотности n(r), которое минимизирует функционал энергии E[n(r)], находится как самосогласованное решение системы одноэлектронных уравнений шредингеровского типа (называемых уравнениями Кона-Шэма:

$$-\frac{\hbar^2}{2m}\nabla^2\psi_i(r) + \upsilon_{eff}(r)\psi_i(r) = \varepsilon_i\psi_i(r)$$

Искомая электронная плотность находится по одноэлектронным волновым функциям как:

$$n(r) = \sum |\psi_i(r)|^2$$
.

Рис. 1. Профиль электронной плотности у поверхности в модели желе для двух значений плотности положительного фона: $r_{s} = 2$ (сплошная линия) моделирует Al и $r_s = 5$ (пунктирная линия) моделирует Cs. Расстояние дано в единицах длины волны Ферми, которая равна 3,45 А для r = 2 и 8,65 А для *r* = 5.

r_s - безразмерная величина (среднее расстояние между электронами)

Давайте применим модель желе для задачи поверхности. Для полубесконечной поверхности с направлением z вдоль нормали к поверхности распределение положительного заряда $n^+(r)$ имеет вид ступени при z = 0, то есть

$$n^+(r) = \begin{cases} \overline{n}, & z \leq 0\\ 0, & z > 0. \end{cases}$$

Плотность электронов должна удовлетворять следующим условиям:

$$\lim n(r) = \left\{ egin{array}{cc} \overline{n}, & z
ightarrow -\infty \ 0, & z
ightarrow +\infty. \end{array}
ight.$$

Модель желе.

Рис. 2. СТМ изображение (500х500 A²) в режиме постоянного тока от поверхности Cu(111), полученное при положительном потенциале на образце 0,1 В. Ясно видны осцилляции Фриделя поверхностной плотности электронов около ступеней и точечных дефектов. Вертикальный масштаб изображения сильно растянут, чтобы осцилляции Фриделя были видны более четко.

Поверхностные состояния

Рис. 3.

а - Одномерный модельный потенциал полубесконечной решетки. Два типа волновых функций в полубесконечном кристалле,

б - объемные состояния;

в - поверхностные состояния.

Таммовские состояния

Если кристалл ограничен поверхностью, то периодичность решетки нарушается (по крайней мере а направлении, перпендикулярном к поверхности). При этом оказываются разрешенными и такие значения энергии, которые попадают в запрещенные зоны. Это и есть таммовские поверхностные уровни. Электрон в таммовском состоянии напоминает поплавок на поверхности воды: он может свободно двигаться вдоль поверхности, но не способен ни уйти в глубь твердого тела, ни выйти из тела наружу. Электроны как бы прилипают к поверхности. Такое поведение электронов в поверхностных состояниях описывается волновой функцией (жирная кривая), экспоненциально спадающей в глубь кристалла. Пунктирная кривая изображает потенциальную энергию электрона в кристалле. Из хода этой кривой видно, что для того, чтобы оказаться в вакууме, электрону необходимо преодолеть потенциальный барьер. Для простоты на рисунке не показан изгиб зон вблизи поверхности.

состояния Шокли

Поверхностные состояния Шокли можно объяснить неспаренными связями атомов, находящихся на поверхности. Например, при расколе кристалла создававшие эти связи электронные пары распадаются на независимые электроны, каждый из которых остается в своем атоме. Энергии «одиноких» электронов больше, чем у электронов, образующих ковалентные связи, и поэтому могут попасть в одну из запрещенных зон. Но такие энергии, как мы видели, соответствуют таммовским состояниям. Этот пример показывает, что таммовские состояния и поверхностные состояния Шокли – два частных случая одного и того же явления: перестройки электронной структуры кристалла поверхностью. Таммовские состояния отвечают такой модели кристалла, когда электронные волны проходят через него, лишь слегка «цепляясь» за атомы, почти как в пустом пространстве. В противоположность этой модели «квазисвободных» электронов, состояния Шокли соответствуют сильной связи с атомами, когда зонное движение электронов по кристаллу возникает лишь благодаря их перескокам с одной связи на другую.

Поверхностная проводимость

Рис. 4. Схематическая <u>иллюстрация изгиба зон у</u> поверхности полупроводника, а, б - n-типа; е, г - pтипа. Рис. *а* и *в* иллюстрируют неравновесную ситуацию. Рис. б и г показывают изгиб зон при равновесии. Е и Е — края зоны проводимости и валентной зоны, Е, энергия Ферми, E_d и E_a энергии объемных донорных и акцепторных уровней. $Q_{ss} = -Q_{sc}$ - заряды, Q_{ss} накопленные на Эповерхности и в слое пространственного заряда. $eV_{s} = ev (z = 0)$ обозначает изгиб зон.

встроенный потенциал *v(z)* внутри слоя пространственного заряда имеет вид:

$$v(z) = v_{bulk} - \frac{2\pi N_d}{\varepsilon} (z-d)^2$$

где є - диэлектрическая постоянная полупроводника, а *z* - расстояние от поверхности.

Рис. 5. Изменение поверхностной проводимости и ДМЭ функция картин как температуры отжига. Измерения проводились при 300 K после каждого шага изохронного отжига.

для слоевой проводимости д полупроводника:

$$g = g_0 + \Delta \sigma_{SC} + \Delta \sigma_{SS} \, .$$

Рис. 6. Сопротивление образца Si (111)7x7, измеренное четырехзондовым методом, как функция расстояния между зондами. Вставки схематически показывают распределение тока в образце при использовании четырехзондового метода при различных расстояниях между зондами. Серой сплошной полосой показана расчетная зависимость для полубесконечного образца R = $\rho/2\pi d$ с удельным сопротивлением $\rho = 5-15 \text{ Ом} \cdot \text{см}$

«Профили» сопротивления на поверхностях *б* - Si(111)3^{1/2}x3^{1/2}-Ag; в - Si(111)7x7, измеренные с помощью микрозондов (расстояние между зондами 8 мкм) поперек макроступеней. Морфология поверхности образцов изображена схематически в нижней части графиков. Сопротивление, измеренное поперек ступени, много выше, чем измеренное на террасе без ступеней.

Работа выхода

Рис. 8. Энергетическая схема электронных уровней металла в модели свободных электронов. E_F — есть энергия Ферми: ϕ — работа выхода: W — глубина потенциальной ямы, в которой находятся валентные электроны твердого тела.

 $e^2/4\piarepsilon_0(2z)^2$ - сила изображения

Рис. 9. Общий вид эквипотенциальных линий двойного электрического слоя. Если центр этого слоя принять за плоскость поверхности, то она должна совпадать с положением потенциальной ступеньки.

Таблица 1. Экспериментальные величины работы выхода для некоторых металлов

	Структура	Работа выхода ϕ , эВ			
Металл		Грань			Поликристалл
		(110)	(100)	(111)	
Cs	о.ц.к.				2,9
Li	0.ц.к.				2,30
Ag	г.ц.к.		4,42	$4,\!56$	4,3
Cu	г.ц.к.	4,48	4,63	$4,\!88$	$4,\!65$
\mathbf{Pt}	г.ц.к.		5,84	$5,\!82$	$5,\!65$
Ir	г.ц.к.	5,42	5,67	5,76	5,3

Рис. 10. Изменения работы выхода, вызванные адсорбцией, *а* - хлора; *б* - цезия на поверхности Cu(111). Работа выхода чистой поверхности Cu(111) составляет 4,88 эВ.

Рис. 11. Схематическая зонная диаграмма для поверхности полупроводника, ϕ - работа выхода, χ - сродство к электрону, eV_s - изгиб зон, Ev - потолок валентной зоны, E_c - дно зоны проводимости, а E_f - уровень Ферми

 $\phi = \chi + eV_S + (E_C - E_F) \; .$

Полевая эмиссия.

Рис. 10. Диаграмма потенциальной энергии для электрона вблизи поверхности металла в присутствии внешнего электрического поля, напряженности *F*. Суммарный потенциал (показан сплошной линией) равен сумме потенциала изображения (показан пунктирной линией) и потенциала приложенного поля (показан штриховой линией), ϕ - работа выхода в отсутствие приложенного поля. Уменьшение потенциала на величину $\delta \phi$ из-за эффекта Шотки отмечено, z_0 - положение максимума суммарного потенциала.

Плотность тока ј для этого процесса описывается выражением Фоулера-Нордгейма:

$$j = \frac{1,54 \times 10^{-6} F^2}{\phi t^2(\xi)} \exp\left[\frac{-(6,83 \times 10^7 \phi^{3/2} f(\xi))}{F}\right] \ [\text{A/cm}^2],$$

где F - это приложенное напряжение в В /см, φ - работа выхода металла в эB, a t(ξ) и f(ξ) - медленно меняющиеся функции безразмерного параметра ξ.

Термоэлектронная эмиссия.

Плотность термоэлектронного тока *j* с однородной поверхности металла при температуре *T* описывается выражением Ричардсона-Дэшмана:

 $j = AT^2 \exp(-\phi/k_B T) ,$

где
$$A = \frac{4\pi m k_B^2 e}{h^3} \approx 120 \text{ A см}^{-2} \text{K}^{-2}$$

а m и е - масса и заряд электрона, соответственно, h - постоянная Планка, a kв - постоянная Больцмана.

Таблица 2. Величины работы выхода некоторых граней кристалла вольфрама, определенные в экспериментах по полевой эмиссии и термоэлектронной эмиссии.

Плоскость	Работа выхода ϕ , эВ			
	Полевая эмиссия	Термоэлектронная эмиссия		
(116)	4,30	4,29		
(111)	4,39	4,39		
(112)	4,65-4,93	4,65		
(011)	5,70-5,99	${\sim}5,\!26$		

Фотоэлектронная эмиссия.

$$h\nu_0 = \phi$$
.

Фототок насыщения из однородного металла при температуре Т описывается выражением Фоулера:

$$j = B(k_B T)^2 f\left(\frac{h\nu - \phi}{k_B T}\right) ,$$

где В - параметр, зависящий от материала, а f - универсальная функция Фоулера.