Анализ решений по капиталовложениям. Методы оценки эффективности инвестиций

Анализ решений по капиталовложениям

- Стратегическая перспектива
- Основы принятия решений
- Компоненты анализа
- Методы оценки эффективности капиталовложений

Стратегическая перспектива

- Анализ решений по новым капиталовложениям затрагивает достаточно сложный комплекс вопросов и экономических альтернатив, с которыми имеют дело менеджеры компании.
- Поскольку капиталовложения, в отличие от расходов по производственной деятельности, обычно являются долгосрочными вложениями, они должны производиться в русле общей стратегии компании. Таким образом, инвестиции сначала следует оценивать с точки зрения стратегической перспективы компании.

Стратегическая перспектива

Выбор инвестиционных проектов должен отражать желаемое направление развития компании и учитывать:

- ожидаемые экономические условия;
- перспективы для специфической отрасли или сегмента рынка, где работает компания;
- конкурентоспособность компании.

Множество шагов по определению, анализу и выбору возможных инвестиций обычно называют составлением капитального бюджета (capital budgeting).

Основная задача — это выбрать при имеющихся ограниченных ресурсах те инвестиции, которые обещают дать желаемый уровень доходности при приемлемой степени риска.

Основы принятия решений

Эффективный анализ капиталовложений требует от аналитика и от лица, принимающего решения, четкого осознания того, как много переменных здесь затрагивается. Требуется установить ряд основных правил для того, чтобы результаты получались точными, постоянными и значимыми. Эти базовые правила относятся к:

- определению проблемы;
- природе инвестиций;
- оценкам будущих затрат и выгод;
- дополнительным денежным потокам;
- важным данным учета;
- необратимым затратам (sunk costs);
- дисконтированию будущих денежных потоков.

Компоненты анализа

Чтобы судить о привлекательности любого инвестиционного проекта, следует рассматривать четыре элемента:

- объем затрат чистые инвестиции (net investment);
- потенциальные выгоды чистый денежный приток от проекта (net cash inflows);
- период, в течение которого инвестиционный проект, как ожидается, будет давать доход жизненный цикл (economic life) инвестиции;
- любое высвобождение капитала в конце срока экономической жизни инвестиции — ликвидационная стоимость (terminal value).

Жизненный цикл инвестиционного проекта

- Для целей инвестиционного анализа единственным важным периодом является жизненный цикл (economical life) в отличие от физического срока службы (phisycal life) оборудования и срока использования мехнологии (technological life).
- Даже если здание или часть оборудования в отличном состоянии, жизненный цикл инвестиции заканчивается, как только исчезает рынок для данного продукта или услуги.

Ликвидационная стоимость

Обычно, если ожидают получить значительное высвобождение капитала (recovery of capital) путем постепенной продажи активов к концу срока их службы, то предполагаемую сумму выручки следует ввести в анализ. Такое высвобождение средств у можно получить от оборудования, а также от высвобождения любого оборотного капитала, имеющего отношение к данному проекту.

Методы оценки эффективности капиталовложений

Международная практика оценки экономической эффективности капитальных вложений базируется на концепции временной стоимости денег и основана на следующих принципах:

- Оценка возврата инвестируемого капитала производится на основе показателя денежного потока (Cash flow)
- Инвестируемый капитал, равно как и денежный поток, приводится к настоящему времени или к определенному расчетному году (который, как правило, предшествует началу реализации проекта)
- Процесс дисконтирования капитальных вложений и денежных потоков производится по различным ставкам дисконта, которые определяются в зависимости от особенностей инвестиционных проектов
- При определении ставки дисконта учитываются структура капитальных вложений и стоимость отдельных составляющих капитала.

Простые показатели оценки

Простая окупаемость:

Чистые инвестиции

(Net investment)

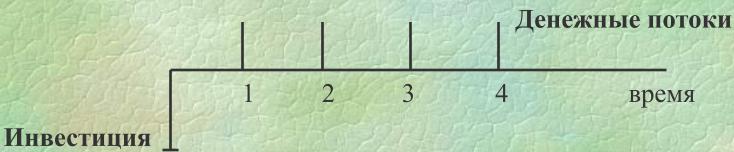
Простая окупаемость = -----

(Payback)

Средний годовой приток

денежных средств от проекта

(Average annual cash inflow)


Простые показатели оценки

Простая ставка доходности инвестиций:

Суть методов оценки

Исходные инвестиции путем создания или улучшения бизнеса генерируют денежные потоки $\mathrm{CF}_1,\ \mathrm{CF}_2,\ \ldots\ \mathrm{CF}_n.$ Капитальные вложения признаются эффективными, если поток достаточен для:

- возврата исходной суммы капитальных вложений,
- обеспечения требуемой отдачи на вложенный капитал.

Наиболее распространены следующие показатели эффективности капитальных вложений:

- чистое современное значение инвестиционного проекта (NPV),
- внутренняя норма прибыльности (доходности, рентабельности) IRR,
- дисконтированный период окупаемости.
- индекс прибыльности

Метод дисконтированного периода окупаемости

Рассмотрим этот метод на конкретном примере анализа двух взаимоисключающих друг друга проектов.

Пример. Пусть оба проекта предполагают одинаковый объем капитальных вложений \$1,000 и рассчитаны на 4 года.

- Проект А генерирует следующие денежные потоки по годам: 500, 400, 300, 100;
- п Проект Б генерирует следующие денежные потоки по годам: 100, 300, 400, 600.

Показатель дисконтирования 10%.

Метод дисконтированного периода окупаемости

<u>Решение для проекта A</u>: DPB = 2 + 214 / 225 = 2,95

Год	0	1	2	3	4
Чистый денежный поток (ЧДП)	-1 000	500	400	300	100
Дисконтированный ЧДП	-1 000	455	331	225	68
Накопленный дисконтированный ЧПД	-1 000	-545	-214	11	79

Решение для проекта B: DPB = 3 + 360 / 410 = 3,87

Год	0	1	2	3	4
Чистый денежный поток (ЧДП)	-1 000	100	300	400	600
Дисконтированный ЧДП	-1 000	91	248	301	410
Накопленный дисконтированный ЧПД	-1 000	-909	-661	-360	50

Недостаток метода:

- учитывает только первые денежные потоки, которые "укладываются" в период окупаемости,
- может конфликтовать с другими методами.

Метод чистого современного значения (NР[₩])

$$NPV = CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n} = \sum_{k=0}^n \frac{CF_k}{(1+r)^k}$$

Суть метода. Современное чистое значение входного денежного потока сравнивается с современным значением выходного потока, обусловленного капитальными вложениями. Разница между первым и вторым есть чистое современное значение, величина которого определяет принимаемое решение.

Процедура метода

- Шаг 1. Определяется современное значение каждого денежного потока, входного и выходного.
- Шаг 2. Суммируются все дисконтированные значения элементов денежного потока, определяется NPV.
- Шаг 3. Производится принятие решения.
 - для независимого проекта проект принимается, если NPV больше или равно 0;
 - для нескольких альтернативных проектов принимается тот проект, который имеет большее значение NPV, если только оно неотрицательное.

Метод чистого современного значения 16 (поясняющий пример)

Пример. Руководство предприятия собирается внедрить новую машину, которая выполняет операции, производимые в настоящее время вручную. Машина стоит вместе с установкой \$5,000 со сроком эксплуатации 5 лет и нулевой ликвидационной стоимостью. По оценкам финансового отдела предприятия внедрение машины за счет экономии ручного труда позволит обеспечить дополнительный входной поток денег \$1,800. На четвертом году эксплуатации машина потребует ремонт стоимостью в \$300.

Экономически целесообразно ли внедрять новую машину, если предприятие требует отдачу на заработанные деньги минимум 20%?

Метод чистого современного значения (поясняющий пример)

Решение:

Наименование денежного потока	Год(ы)	Денежный поток	Множитель	Современное значение
Исходная инвестиция	Сейчас	(\$5,000)	1	(\$5,000)
Входной денежный поток	(1-5)	\$1,800	2,991	\$5,384
Ремонт машины	4	(\$300)	0,482	(\$145)
Современное чистое значение (NPV)				\$239

В результате расчетов NPV = \$239 > 0, поэтому с позиций финансовой эффективности проект следует принять.

Интерпретация значения NPV: сумма \$239 - это "запас прочности", призванный компенсировать возможную ошибку при прогнозировании денежных потоков. Американские финансовые менеджеры говорят, что это деньги, отложенные на "черный день".

Метод чистого современного значения⁸ (поясняющий пример)

Что, если требуемый показатель отдачи (показатель дисконта) будет больше?

Расчет показывает, что при r = 24% получим NPV = -185,90, то есть в этом случае проект не принимается.

Метод чистого современного значения¹⁹ (типичные денежные потоки)

- п дополнительный объем продаж или увеличение цены товара,
- п уменьшение расходов (себестоимости товаров),
- остаточное значение стоимости оборудования после окончания проекта,
- освобождение оборотных средств (закрытие счетов дебиторов, продажа остатков ТМЗ, продажа акций и облигаций других компаний).
- п начальные инвестиции,
- увеличение потребностей в оборотных средствах (увеличение счетов дебиторов для привлечения новых клиентов, приобретение сырья и комплектующих для начала производства),
- п ремонт и техническое обслуживание оборудования,
- п.).

Метод чистого современного значения⁰ (влияние инфляции)

Анализ влияния инфляции может быть произведен двумя способами:

- используются различные темпы инфляции по отдельным составляющим затрат и доходов,
- используется одинаковый темп инфляции для различных составляющих затрат и доходов.

В рамках первого подхода, который в большей степени отвечает реальной ситуации, особенно в странах с нестабильной экономикой, метод чистого современного значения используется в своей стандартной форме, но все составляющие расходов и доходов, а также показатели дисконта корректируются в соответствии с ожидаемым темпом инфляции по годам.

В рамках второго подхода влияние инфляции носит своеобразный характер: инфляция влияет на числа (промежуточные значения), получаемые в расчетах, но не влияет на конечный результат и вывод относительно судьбы проекта.

Метод чистого современного значения²¹ (влияние инфляции)

Пример. Компания планирует приобрести новое оборудование по цене \$36,000, которое обеспечивает \$20,000 экономии затрат (в виде входного денежного потока) в год в течение ближайших трех лет. За этот период оборудование подвергнется полному износу. Стоимость капитала компании составляет 16%, и ожидается инфляция 10% в год.

Решение без учета инфляции:

	Год	Сумма денег	Дисконтный множитель	Современное значение
Исходная инвестиция	Сейчас	(\$36,000)	1	(\$36,000)
Годовая экономия	(1-3)	\$20,000	2,246	44,920
Чистое современное знач	\$8,920			

Вывод: проект следует принять, отмечая высокий запас «на черный день».

Метод чистого современного значения²² (влияние инфляции)

Решение с учетом инфляции:

Прежде всего, необходимо скорректировать на влияние инфляции требуемое значение стоимости капитала. Это делается так:

основной показатель отдачи: 16%

эффект от инфляции: 10%

смешанный эффект (10% от 16%): 1,6%

приведенный показатель дисконта: 27,6%

		Сумма	Индекс	Приведенный	27,6%-ый	Настоящее
	Год	денег	цен	денежный поток	множитель	значение
Исходная инвестиция	0	(\$36,000)		(\$36,000)	1,0000	(\$36,000)
Годовая экономия	1	20,000	1,10	22,000	0,7837	17,241
Годовая экономия	2	20,000	1,21	24,200	0,6142	14,864
Годовая экономия	3	20,000	1,33	26,620	0,4814	12,815

Чистое современное значение РЕЗУЛЬТАТЫ ОБОИХ МЕТОДОВ СОВПАДАЮТ \$8,920

Внутренняя норма прибыльности (IRR)²³

IRR - значение показателя дисконта, при котором

- настоящее значение инвестиции равно настоящему значению потоков денежных средств за счет инвестиций, или
- обеспечивается нулевое значение чистого настоящего значения инвестиционных вложений.

Математическое решение:

$$\sum_{j=1}^{n} \frac{CF_{j}}{(1+IRR)^{j}} = CF_{o},$$

где CF_j - входной денежный поток в j-ый период, CF₀ - настоящее значение инвестиции.

Правило принятия решения на основе IRR:

- если IRR больше стоимости капитала, то проект принимается,
- если IRR меньше стоимости капитала, то проект отклоняется.

Внутренняя норма прибыльности (IRR)²⁴

Средства для расчета IRR:

- финансовые таблицы,
- финансовый калькулятор,
- электронные таблицы (Excel).

Пример решения с помощью финансовых таблиц и интерполяции

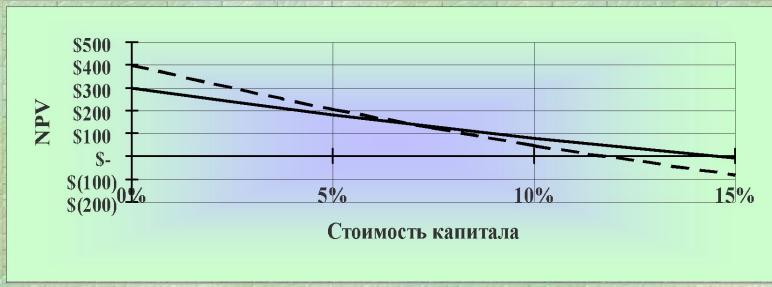
- Требуемая инвестиция\$6,000
- Годовая экономия \$1,500
- Полезная жизнь 10 лет
- Множитель дисконта: k = 6,000 / 1,500 = 4.

С помощью финансовой таблицы современного значения аннуитета для n=10 лет находим: при r=20%, k=4,19, а при r=24%, k=3.68. Значит, 20% < IRR < 24%.

$$IRR \cong 20\% + \frac{4.19 - 4.00}{4.19 - 3.68} \cdot 4\% = 21,49\%.$$

Сравнение NPV и IRR методов

Рассмотрим два проекта с одинаковыми исходными инвестициями, но с различными входными денежными потоками


Год	Проект А	Проект В
0 4 15	(\$1,000)	(\$1,000)
1	500	100
2	400	300
3	300	400
4747	100	600

Рассчитаем NPV для различных значений стоимости капитала

r, %	Проект А	Проект В
	\$300	\$400
5%	180,42	206,5
10%	78,82	49,18
15%	-8,33	-80,14

Сравнение NPV и IRR методов

Для проекта A IRR = 14,5%, для проекта В IRR = 11,8%. Точка пересечения NPV профилей r*=7,2%.

- П Для взаимоисключающих проектов:
 - если $r > r^*$, оба метода дают одинаковый результат,
 - если r < r*, методы конфликтуют: NPV-метод принимает проект B, IRR-метод принимает проект A.

Индекс прибыльности

Принятие решения по критерию наименьшей стоимости

Данный подход используется, когда трудно или невозможно вычислить денежный доход.

Пример: трактор участвует во многих производственных процессах. Нужно решить: эксплуатировать старый или купить новый.

Исходные данные:

	Старый трактор	Новый трактор
Стоимость покупки	0	\$25,000
Остаточная стоимость сейчас	\$3,000	0
Годовые денежные затраты на эксплуатацию	\$15,000	\$9,000
Капитальный ремонт сейчас	\$4,000	0
Остаточная стоимость через 6 лет	0	\$5,000
Время проекта	6 лет	6 лет

Необходимо принять решение в пользу одного из вариантов

Принятие решения по критерию наименьшей стоимости

Покупка новой машины:

	Годы	Денежный поток	Коэффициент пересчета для 10%	Настоящее значение
Исходные инвестиции	0	(\$25,000)	1.000	(\$25,000)
Остаточная стоимость старого трактора	0	3,000	1.000	3,000
Годовая стоимость эксплуатации	1-6	(9,000)	4.355	(39,195)
Остаточная стоимость нового трактора	6	5,000	0.564	2,820
Настоящее значение дене	жных поте	рь		(\$58,375)

Использование старого трактора:

	Годы	Денежный поток	Коэффициент пересчета для 10%	Настоящее значение
Капитальный ремонт	0	(\$4,000)	1.000	(\$4,000)
Годовая стоимость				
эксплуатации	1-6	(15,000)	4.355	(65,325)
Настоящее значение дене	(\$69,325)			