Life-cycle Analysis/Assessment (LCA)

Life-Cycle Assessment

The technique whereby the environmental impacts of a <u>material</u>, <u>process</u> or <u>product</u> are identified and assessed over its <u>entire life-cycle</u>

Streamlined LCA

An LCA with <u>reduced scope</u> such that only those issues considered to be of <u>principal significance</u> are taken into account

Life-Cycle Inventory

The result of gathering data on all the <u>energy and material</u> <u>input flows</u> required by a process or product and all the <u>output emissions to air, water and land</u>, including solid

waste

Burden

'Burden' is a term used to describe the <u>materials</u> and energy used to make, use or dispose of a product and the <u>resultant emissions</u> to air, land and water.

A product may have many burdens associated with it, such as *CO2* or *wastewater*, and therefore an <u>inventory</u> needs to be developed to identify them all

Characterization

The process by which the significance of a product's <u>environmental burdens</u> are quantified

Classification

The process by which <u>environmental burdens</u> are grouped into <u>impact categories</u> such as <u>acidification</u> and <u>global warming</u>

Environmental Impact

Once a <u>set of burdens</u> has been identified for a product, it is useful to know something of the <u>overall implications</u> of those burdens. This 'aggregated' consideration is referred to as the <u>environmental impact</u>

Impact Assessment

The process by which <u>burdens</u> identified in an inventory are assessed so that an overall <u>environmental impact</u> can be identified

Impact Categories

Environmental burdens can have a number of potential effects on the environment, such as global warming, acidification and human health effects – these are called **impact categories**. To form an appraisal of the burdens, it is advisable to group the burdens into several impact categories to aid assessment

System Boundary

When conducting an LCA, it is necessary to identify the <u>limits of the study</u>, i.e. how far back and forward in a product's life-cycle it is necessary to <u>gather data</u>.

For example, in the case of a washing machine, <u>upstream options</u> include placing the boundary at the factory gate (i.e. the point where materials are received) or at the point where <u>raw materials</u> are extracted from the ground

System Flows

The term used to denote the <u>energy and</u> <u>material inputs</u> to a process or product and the <u>output emissions</u> to air, water and land, including solid waste

Valuation

The process by which <u>impact categories</u> are assessed for their <u>relative importance</u>

• COx

A general term used to describe the <u>oxides of carbon</u> produced by the <u>complete and incomplete combustions</u> of <u>organic matter</u> such as coal, gas, biomass (wood, peat, etc.) and <u>oil based materials</u>

• NOx

A general term used to describe <u>oxides of nitrogen</u>. Oxides of nitrogen are produced by the combustion of <u>fossil fuels</u> and certain <u>industrial processes</u> such as *nitric acid works*, electroplating etc.

Nuisance

An act or omission by a person which <u>causes inconvenience</u>, <u>discomfort or harm</u> to another person, e.g. noise, dusts, odours etc. The nuisance may be covered in <u>statute law</u>, or may be based on a common law judgement.

Life Cycle Analysis (LCA)

- <u>Life-cycle analysis</u> (LCA) is a method in which the <u>energy</u> and <u>raw material</u> consumption, different types of <u>emissions</u> and other important factors related to a specific product are being measured, analyzed and summoned over the products entire life cycle <u>from an environmental point of</u> <u>view</u>.
 - Life-Cycle Analysis attempts to measure the "cradle to grave" impact on the ecosystem.
- LCAs started in the early 1970s, initially to investigate the energy requirements for different processes.
- <u>Emissions</u> and <u>raw materials</u> were added later.
- LCAs are considered to be the most comprehensive approach to assessing environmental impact.

LCA steps

Generally, an LCA consists of four main activities:

- 1.Goal definition (ISO 14040):
 - The <u>basis</u> and <u>scope</u> of the evaluation are defined.
- 2.Inventory Analysis (ISO 14041):
 - Create a process tree in which all processes from <u>raw material</u> <u>extraction</u> through <u>waste water treatment</u> are mapped out and connected and mass and energy balances are closed (all emissions and consumptions are accounted for).
- 3.Impact Assessment (ISO 14042):
 - <u>Emissions</u> and <u>consumptions</u> are translated into <u>environmental effects</u>. The environmental effects are grouped and weighted.

4.Improvement Assessment/Interpretation (ISO 14043):

<u>Areas for improvement</u> are identified.

LCA steps

Номер	Английское название	Перевод названия	
ISO 14040:1997	Environmental management — Life cycle assessment — Principles and framework	Экологический менеджмент — Оценка жизненного цикла — Принципы и структура	
ISO 14041:1998	Environmental management — Life cycle assessment — Goal and scope definition and inventory analysis	Экологический менеджмент— Оценка жизненного цикла— Определение цели и области исследования, инвентаризационный анализ	
ISO 14042:2000	Environmental management — Life cycle assessment — Life cycle impact assessment	Экологический менеджмент— Оценка жизненного цикла— Оценка воздействия жизненного цикла	
ISO 14043:2000	Environmental management — Life cycle assessment — Life cycle interpretation	Экологический менеджмент— Оценка жизненного цикла— Интерпретация жизненного цикла	

Номер	Английское название	Национальный аналог	
ISO 14040:1997 Заменен на ISO 14040:2006	Environmental management — Life cycle assessment — Principles and framework	ДСТУ ISO 14040:2004 Екологічне керування. Оціню- вання життєвого циклу. Принципи та структура.	
ISO 14041:1998	Environmental management — Life cycle assessment — Goal and scope definition and inventory analysis	ДСТУ ISO 14041-2004 Екологічне керування. Оціню- вання життєвого циклу. Визначення цілі і сфери засто- сування інвентаризації.	
ISO 14042:2000	Environmental management — Life cycle assessment — Life cy <mark>cle impact assessment</mark>		
ISO 14043:2000	Environmental management — Life cycle assessment — Life cycle interpretation		

Номер	Английское название	Перевод названия	
ISO/WDTR 14047	Environmental management — Life cycle assessment — Examples of application of ISO 14042	Экологический менеджмент— Оценка жизненного цикла— Примеры применения стандарта ISO 14042	
ISO/TS 14048:2002	Environmental management — Life cycle assessment — Life cycle assessment data documentation format	Экологический менеджмент— Оценка жизненного цикла— Формат документирования данных по оценке жизненного цикла	
ISO/TR 14049:2000	Environmental management — Life cycle assessment — Examples of application of ISO 14041 to goal and scope definition and inventory analysis	Экологический менеджмент— Оценка жизненного цикла— Примеры применения стандарта ISO 14041 для определения цели и области исследования, а также инвентаризационного анализа	

Номер	Английское название	Национальный аналог
ISO/WDTR 14047	Environmental management — Life cycle assessment — Examples of application of ISO 14042	
ISO/TS 14048:2002	Environmental management — Life cycle assessment — Life cycle assessment data documentation format	
ISO/TR 14049:2000	Environmental management – Life cycle assessment – Examples of application of ISO 14041 to goal and scope definition and inventory analysis	ДСТУ ISO/TR 14049:2004 Екологічне керування. Оці- нювання життєвого циклу. Приклади використання ISO 14041 для визначення цілі і сфери застосування та аналізування інвентаризації.

LCA Step 1 Goal Definition and Scope

- It is important to establish beforehand <u>what purpose</u> the model is to serve, <u>what one wishes to study</u>, what <u>depth</u> <u>and degree of accuracy</u> are required, and what will ultimately become the <u>decision criteria</u>.
- In addition, the <u>system boundaries</u> for both time and place - should be determined.

Thus, pay special attention to:

- Basis for evaluation (what and why)
- Temporal boundaries (time scale)
- Spatial boundaries (geographic)

LCA Step 2 - Inventory Analysis

- This means that the <u>inputs</u> and <u>outputs</u> of all life-cycle processes have to be determined in terms of <u>material</u> and <u>energy</u>.
- Start with making a process tree or a <u>flow-chart</u> classifying the events in a product's life-cycle which are to be considered in the LCA, plus their interrelations.
- Next, start <u>collecting the relevant data</u> for each event: the emissions from each process and the resources (back to raw materials) used.
- Establish (correct) <u>material and energy balance(s)</u> for each process stage and <u>event</u>.

Single Stage Flow Diagram

Example: Simplified Process Tree for a Coffee Machine's Life-Cycle

Example: Coffee Machine
Life-Cycle Inventory7.3 kg1 kg0.1 kg0.3 kg0.4 kgfee
npaperpoly-
styrenealuminiumsheet steelglas

Problems with Inventory Analysis

- The <u>inventory phase</u> usually takes a great deal of <u>time and</u> <u>effort</u> and mistakes are easily made.
- There exists published <u>data on impacts</u> of different materials such as plastics, aluminum, steel, paper, etc.
 - However, the data is often inconsistent and not directly applicable due to different goals and scope.
 - It is expected that both the quantity and quality of data will improve in the future.
- <u>Mass and energy balances</u> are not correct and defy laws of thermodynamics.
- Results are generalized improperly.

LCA Step 3 - Impact Assessment

Material/impact	Environmental effect
	depletion of biotic resources
copper	doulation of chietic recourses
CO2	 - depiction of abiotic resources
CFC	greenhouse effect
S02	
NOx	ozone layer depletion
phosphorous	
volatile organic compounds	acidification
(VOCS)	eutrophication
heavy metals	eutophication
РСВ	(summer) smog
pesticides	
styrene	human toxicity
Styrene	
	eco-toxicity
	odour

LCA Step 4 - Improvement Assessment/Interpretation

- The final step in Life-Cycle Analysis is to identify <u>areas</u> for improvement.
- Consult the original <u>goal definition</u> for the purpose of the analysis and the target group.
- Life-cycle areas/processes/events with large impacts (i.e., high numerical values) are clearly the most obvious candidates
- However, what are the <u>resources required</u> and risk involved?
 - Good areas for improvement are those where large improvements can be made with minimal (corporate) resource expenditure and low risk.

Weightings - A Single Figure for Environmental Impact

- A <u>single figure</u> is needed for comparison purposes
- Several methods exist, but it is still a controversial issue and <u>no singular widely</u> <u>accepted method exists</u>.
- Three well-documented and used methods are:
 - The Eco-Points method
 - The Environmental Priority System
 - The Eco-Indicator

Eco-Points Method

- The <u>eco-points method</u> was developed in Switzerland and is based on the use of national government policy objectives.
- The evaluation principle is the <u>distance to target</u> <u>principle</u>, or the difference between the total impact in a specific area and the target value.
- The Eco-Points method is not so much an environmental indicator as an indicator "in conformity with policy".

The Eco-Points Evaluation Method A low number of eco-points is preferred. Impacts Normalization Evaluation Result <u>In:</u> — 1 / target value — current / target value Energy <u>Out:</u> CO_2 — 1 / target value — current / target value Eco-p SO₂ — 1 / target value ____ current / target value oints lead — 1 / target value ____ current / target value CFC - 1 / target value ____ current / target value waste 1 / target value ____ current / target value

The Environmental Priority System (EPS)

- The EPS system was used first for Volvo in Sweden.
- It is not based on governmental policy, but <u>on</u> <u>estimated financial consequences of environmental</u> <u>problems</u>.
- It attempts to translate <u>environmental impact</u> into a sort of social expenditure.
 - <u>The first step</u> is to establish the damage caused to a number of "safeguard objects" - objects that a community considers valuable.
 - <u>The next step</u> is to identify how much the community is prepared to pay for these things, i.e., the social costs of the safeguard objects are established.
 - The resulting costs are added up to a single figure.

The EPS Evaluation Method

The Eco-Indicator (95 and 99)

- The aim was to develop an easy to use tool for product designers and the main outcome was <u>a list of 100 indicators</u> for the most significant materials and processes.
 - By using these indicators a designer can easily make combinations and carry out his/her own LCA. No outside expert or software are needed.
- Indicators have been drawn up for all life-cycle phases
 - the production of materials such as steel, aluminum, thermo-plastics, paper, glass
 - production processes, such as injection molding, rolling, turning, welding
 - transport by road, rail, and sea
 - energy generating processes
 - waste processing processes, such as incineration, dumping, recycling.

The most recent revised version is called Eco-Indicator 99.

Eco-Indicator 95

- The evaluation method for calculating the Eco-Indicator 95 strongly focuses on the effects of emissions on the ecosystem.
- For the valuation, the **distance to target principle** is used, but the **targets are based on scientific data** on environmental damage and not on policy statements.
- The targets values are related to three types of environmental damage:
 - <u>deterioration of ecosystems (a target level has been chosen at which</u> "only" 5% ecosystem degradation will still occur over several decades);
 - <u>deterioration of human health</u> (this refers in particular to winter and summer smog and the acceptable level set is that smog periods should hardly ever occur again);
 - <u>human deaths</u> (the level chosen as acceptable is 1 fatality per million inhabitants per year).

Eco-Indicator 95 Evaluation method

Weighting Factors Used in Eco-Indicator 95

Environmental	Weighting	Criterion
<u>effect</u>	factor	
Greenhouse effect	2.5	0.1°C rise every 10 years, 5% ecosystem degradation
Ozone layer depletion	100	Probability of 1 fatality per year per million inhabitants
Acidification	10	5% ecosystem degradation
Eutrophication	5	Rivers and lakes, degradation of an unknown number of aquatic ecosystems (5% degradation)
Summer smog	2.5	Occurrence of smog periods, health complaints, particularly amongst asthma patients and the elderly, prevention of agricultural damage
Winter smog	5	Occurrence of smog periods, health complaints, particularly amongst asthma patients and the elderly
Pesticides	25	5% ecosystem degradation
Airborne heavy metals	5	Lead content in children's blood, reduced life expectancy and learning performance in an unknown number of people
Waterborne heavy metals	5	Cadmium content in rivers, ultimately also impacts on people (see airborne)
Carcinogenic substances	10	Probability of 1 fatality per year per million people

*Setting equivalents for these damage levels is a subjective choice.

LCAs are used:

- in the design process to determine which of several designs may leave a smaller "footprint on the environment", or
- after the fact to identify environmentally preferred products in government procurement or eco-labeling programs.

 Also, the study of reference or benchmark LCAs provides insight into the main causes of the environmental impact of a certain kind of product and <u>design priorities and product design</u> <u>guidelines</u> can be established based on the LCA <u>data</u>.

Softwares

EPA website

- http://www.epa.gov/ORD/NRMRL/lcaccess/reso urces.htm#Software
- GaBi

• http://www.gabi-software.com/

Simapro

<u>http://www.pre.nl/default.htm</u>

Closing Remarks

- It is not the product, but the <u>life-cycle of the</u> product that determines its <u>environmental</u> impact.
- Even if the life-cycle is mapped out, there still exist <u>many uncertainties</u> as to the <u>environmental</u> <u>impact</u> of the processes involved. There is still an immense <u>lack of reliable data</u>.
 - Also consider uncertainties caused by customer behavior and (unknown) future process technologies.
- Knowledge about environmental systems is often highly uncertain.
- The LCA is generally a compromise between practicality and completeness