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if you
are outside on
a dark night in the

middie fo high latitudes,
you might be able fo see

an aurora, a ghostly "curtain”
of light that hangs down from
the sky. This curtain is not just
local: it may be several hundred
kilometers high and several thou-
sand kilometers long, stretching
around Earth in an arc. However, it

is less than 1 km thick. What pro-

duces this huge display, and what

makes it so thin?
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29-1 THE MAGNETIC FIELD

We have discussed how a charged plastic rod produces a vector field-the electric field E-at all
points in the space around it. Sinilatly, a magnet produces a vector field the —magnetic field B-
at all points in the space around 1t. You get a hint of that magnetic field whenever you attach a note
to a refrigerator door with a small magnet, or accidentally erase a computer disk by bringing it near
a magnet. The magnet acts on the door or disk by means of its magnetic field.

‘ b
¢ Ina familiar type of magnet, a wire coil is wound around an
iron core and a current is sent through the coil, the strength
of the magnetic field 15 determined by the size of the current.
In industry, such electromagnets are used for sorting scrap
iron (Fig. 29-1) among many other things. You are probably
more familiar with permanent magnets—magnets, like the
refrigerator-door type, that do not need current to have a
magnetic field.
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FIGURE 29-1
mcrap metal collected by an electromagnet at a steel mull.
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29-2 THE DEFINITION OF B

We determined the electric field E at a point by putting a test particle of charge g at
rest at that point and measuring the electric force K acting on the particle. We then
defined E as F
E=— (29-1)

q
If a magnetic monopole were available, we could define B in a similar way. Because
such particles have not been found, we must define B in another way, in terms of the
magnetic force E; exerted on a mowing electrically charged test particle.

In principle, we do this by firing a charged particle through the point where B is to
be defined, using various directions and speeds for the particle and determining the force
F; that acts on the particle at that point. After many such trials we would find that when
the particle's velocily v is along a particular axis through the point, force F; is zero. For
all other directions of v, the magnitude of F is always proportional to v sing, where ¢ is
the angle between the zero-force axis and the direction of v. Furthermore, the direction
of E 1s always perpendicular to the direction of v. (These results suggest that a cross
product 1s involved.)
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We can then define a magnetic field B to be a vector quantity that is directed along
the zero-force axis. We can next measure the magnitude of F; when v is directed
perpendicular to that axis and then define the magnitude of B in terms of that force

itude:
magnitude e Fy

lglv’
where g 1s the charge of the particle.
We can summarize all these results with the following vector equation:

F=grxB (29-2) ;

That is, the force F; on the particle is equal to the charge ¢ times the cross product of its
velocity v and the magnetic field B. Using Eq. 3-20 to evaluate the cross product, we can
write the magnitude of F; as

F, = lglvBsin ¢, (29-3)

where @ 1s the angle between the directions of velocity v and magnetic field B.
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Finding the Magnetic Force on a Particle

Equation 29-3 tells us that the magnitude of the force F; acting on a particle in a magnetic
field 1s proportional to the charge ¢ and speed v of the particle. Thus, the force 1s equal to
zero if the charge is zero or if the particle is stationary. Equation 29-3 also tells us that the
magnitude of the force 1s zero if v and B are etther parallel ( @ = 0°) or antiparallel (@ =
180%), and the force 1s at its maximum when v and B are perpendicular to each other.

Equation 29-2 tells us all this plus the direction of E,. From Section 3-7, we know that the
cross product v x B in Eq.29-2 15 a vector that is perpendicular to the two vectors v and B.
The right-hand rule (Fig. 29-2¢) tells us that the thumb of the right hand points in the
direction of v x B when the fingers sweep v into B. If g is positive, then (by Eq. 29-2) the
force P;, has the same sign as v x B and thus must be in the same direction. That is, for
positive g, E, points along the thumb as in Figs. 29-2b. If ¢ is negative, then the force F' and
the cross product v x B have opposite signs and thus must be in opposite directions. So,for
negative ¢, E, points opposite the thumb as in Fig 29-4c.
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(a) (%)

FIGURE 29-2 (@) The right-hand rule (in which v 1s swept into B through the
smaller angle @ between them) gives the direction of v x B as the direction of the
thumb. (3) If g i1s positive, then the direction of ;= gv x B is in the direction of v x
B. (¢) If g 15 negative, then the direction of F 1§ oppostte that of v x B.
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Regardless of the sign of the charge, however,

The force F; acting on a charged particle moving with velocity v
through a magnetic field B 1s alwaps perpendicular to v and B.

Thus F, never has a component parallel to v. This means that F; cannot change the
particle's speed v (and thus it cannot change the particle's kinetic energy). The force can
change only the direction of v (and thus the direction of travel); only in this sense does F;
accelerate the particle.

To develop a feeling for Eq. 29-2, consider Fig. 29-3, which shows some tracks left by
charged partticles moving rapidly through a bubble charnber at the Lawrence Berkeley
Laboratory. The chamber, which 15 filled with liquid hydrogen, 1s imtersed in a strong
uniform magnetic field that points out of the plane of the figure. At the left in Fig. 29-3 an
incoming gamma ray-which leaves no track because it 1s uncharged-transforms into an
electron (spiral track marked e-) and a postiron (track marked e+) while it knocks an
electron out of a hydrogen atom (long track marked e7). Check with Eq. 29-2 and Fig.
29-2 that the three tracks made by these two negative particles and one posttive particle
curve in the proper directions.
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FIGURE 29-3 The tracks of two electrons (™) and a positron (e ) in a bubble
chamber that is immersed i a uniform magnetic field that points out of the plane of
the page.
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The 51 unit for B that follows from Eqs. 29-2 and 29-3 15 the newton per coulomb-meter
per second. For convenience, this is called the tesla (T):

nawton
(coulomb)(metarfsecond)

ltesla=1T=1

Recalling that a coulomb per second is an ampere, we have

nawton
(coulomb/sacond)(matar

= Aot (20-4)

1T=1

An earlier (non-5T) unit for B, still in comtnon use, 1s the gauss (G), and
1 tasla = 104 gauss, (29-5)

Table 29-1 lists the magnetic fields that occur ih a few situations. Note that Earth's
magnetic field near the planet's surface is about 107 T (= 100 uT or 1 gauss).
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v/

CHECKPOINT 1:

The figure shows three situations ih which a charged particle with velocity v travels
through a uniform magnetic field B. In each sttuation, what 1s the direction of the magnetic
force Fy on the particle?

L b1
A4 A

(1) () {¢)
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TABLE 29-1 SOME APPROXIMATE MAGNETIC FIELDS

At the surface of a neutron star

Near a big electromagnet

Near a small bar magnet

At Earth's surface

In interstellar space

mmallest value in a magnetically shielded room

Magnetic Field Lines

We can represent magnetic fields with field lines, just as we did for electric fields. Similar
rules apply. That is, (1) the direction of the tangent to a magnetic field line at any point
aives the direction of B at that point, and (2) the spacing of the lines represents the

magnitude of B—the magnetic field 1s stronger where the lines are closer together, and
conversely.
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Figure 29-4a shows how the magnetic field near a bar magnet (a permanent magnet in
the shape of a bar) can be represented by magnetic field lines. The lines all pass through the
magnet, and they form closed loops (even those that are not shown closed in the figure).
The external magnetic effects of a bar magnet are strongest near its ends, where the field
lines are most closely spaced. Thus the magnetic field of the bar magnet in Fig. 29-45
collects the iron filings near the two ends of the magnet.

SR
NN

FIGURE 29-4

(@) The magnetic field lines for

a bar magnet.(d) A "cow magnet":
a bar magnet that 1s intended to be
slipped down into the rumen of a
cow to prevent accidentally
ingested bits of scrap iron from
reaching the cow's intestines.
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Because a magnetic field has direction, the (closed) field lines enter one end of a magnet
and exit the other end. The end of a magnet from which the field lines emerge is called the
north pole of the magnet, the other end, where field lines enter the magnet, is called the
south pole. The magnets we use to fix notes on refrigerators are short bar magnets. Figure
29-5 shows two other comtnon shapes for magnets: a horseshoe magnet and a magnet that
has been bent around into the shape of a € so that the pole faces are facing each other.

( The magnetic field between the pole faces can then be approximately uniform.) Regardless
of the shape of the magnets, if we place two of themn near each other we find:

//’ \\

FIGURE 29-5 (@) A horseshoe magnet and
(b) a C-shaped magnet. (Only some of the
external field lines are shown.)
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SAMPLE PROBLEM 29-1

A uniform magnetic field B, with magnitude 1.2 mT, points vertically upward throughout
the volume of a laboratory chamber. A proton with kinetic energy 5.3 MeV enters the
chamber, moving horizontally from south to north. What magnetic deﬂectmg force acts on
the proton as it enters the chamber? The proton mass 15 1.67 x 10 kg

SOLUTION: The magnetic deflecting force depends on the speed of the proton, which we
can find from K=imv > molving for v, we find

o { \/ )(5.3 MeV)(1.60 X 10-1 /MeV)
1.67 X 10-27 kg

=.3.2:X 10% m/s:
Equation 29-3 then yields

Fg = lglvBsin ¢
(1.60 X 10~ C)(3.2 X 107 m/fs)
X (1.2 X 10-3 T)(sin 90°)
6.1 X 10~ N,
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This may seem like a small force, but it acts on a particle of small mass, producing a large
acceleration, namely,

_ BLXH0EIEN
m 167 X 10~ kg

It remains to find the direction of F;. We know that v points horizontally from south
to north and B points vertically up. The right-hand rule (see Fig. 29-2b) shows us that the
deflecting force E, must point horizontally from west to east, as Fig. 29-6 shows. (The
array of dots in the figure represents a magnetic field pointing directly out of the plane of
the figure. An array of Xs would have represented a magnetic field pointing directly into
that plane.)

If the charge of the particle were negative, the magnetic deflecting force would point
in the opposite direction, that 1s, horizontally from east to west. This 15 predicted
automatically by Eq. 29-2, if we substitute —e for g.

= 3.7 X 1012 m/fs?,

a:

FIGURE 29-6 Sample Problem 29-1. An overhead view of a
proton moving from south to north with velocity vina
chamber. A magnetic field points vertically upward in the
chamber, as represented by the array of dots (which resemble
the tips of arrows). The proton is deflected toward the east.
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PROBLEM SOLVING TACTICS
TACTIC 1: Classicad and Relativistic Formuwlas for Kinetic Energy

In Sample Problemn 29-1, we used the (approximate) classical expression (K = -;-mv 4 for

the kinetic energy of the proton rather than the (exact) relativistic expression (see Eq. ;

7-51). The criterion for when the classical expression may safely be used is that K<€me”,
where mc? is the rest energy of the particle. In this case, X = 5.3 MeV and the rest energy

of a proton 1s 938 MeV. This proton passes the test and we were justified in treating it as
"slow," that is, in using the classical X = —mv formula for the kinetic energy. That 15 not
always the case in dealing with energetic par‘ucles.
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29-3 CROSSED FIELDS:
DISCOVERY OF THE ELECTRON

Both an electric field E and a magnetic field B can produce a force on a charged particle. When
the two fields are perpendicular to each other, they are said to be crossed fields. Here we shall
examine what happens to charged particles, namely, electrons, as they move through crossed
fields. We use as our example the experiment that led to the discovery of the electron in 1897 by
J. J. Thomson at Cambridge University.

Figure 29-7 shows a modern, stmplified version of Thomson's experimental apparatus—a
cathode ray tube (which is like the "picture tube" in a standard television set). Charged particles
(which we now know as electrons) are emitted by a hot filament at the rear of the evacuated
tube and are accelerated by an applied potential difference V. After they pass through a slit in
screen C, they form a narrow beatn. They then pass through a region of crossed E and B fields,
headed toward a fluorescent screen &, where they will produce a spot of light (on a television
screen the spot would be part of the picture). The forces on the charged particles in the
crossed-fields region can deflect them from the center of the screen. By controlling the
magnitudes and directions of the fields, Thomson could thus control where the spot of light
appeared on the screen. For the particular field arrangement of Fig. 29-7, electrons are forced up
the page by the electric field E and down the page by the magnetic field B-that 1s, the forces are
in opposition. Thomson's procedure was equivalent to the following series of steps.
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B
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FIGURE 29-7 A modern version of J. J. Thomson's apparatus for measuring the ratio of 1 to
charge for the electron. The electric field E 15 established by connecting a battery across the
deflecting plate terminals. The magnetic field B is set up by means of a current ih a system of
coils (not shown). The magnetic field shown is into the plane of the figure, as represented by the
array of Xs (which resemble the feathered ends of arrows).

1. 5et E=0and 5 =0 and note the position of the spot on screen 5 due to the undeflected beam.
2. Turn on E and measure the resulting beam deflection.
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3. Maintaining E, now turn on B and adjust its value until the beam returns to the
undeflected posttion. (With the forces ih opposttion, they can be made to cancel.)

We discussed the deflection of a charged particle mowving through an electric field E
between two plates (step 2 here) in Hample Problem 23-8. We found that the deflection of
the particle at the far end of the plates 1s

_ ¢EL?
YT (29-6)

where v 1s the particle's speed, m its mass, and g tts charge, and L 15 the length of the
plates. We can apply this same equation to the beam of electrons i Fig. 29-7 by measuring
the deflection of the beam on screen & and then working back to calculate the deflection p
at the end of the plates. (Because the direction of the deflection 15 set by the sign of the
particle's charge, Thomson was able to show that the particles that were lighting up his
screen were negatively charged.)
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When the two fields in Fig. 29-7 are adjusted so that the two deflecting forces cancel
(step 3), we have from Eqs. 29-1 and 29-3

lg|E = lglvB sin(90°) = l¢lvB,

or

E
V=g (29-7)

Thus the crossed fields allow us to measure the speed of the charged particles passing
through them. Substituting Eq. 29-7 for v in Eq. 29-6 and rearranging vield

m B2

¢ E’ (29-8)

in which all quantities on the right can be measured. Thus, the crossed fields allow us to
measure the ratio m/y of the particles moving through Thomson's apparatus.

Thomson claimed that these particles are found in all matter. He also claimed that
they are lighter than the lightest known atom (hydrogen) by a factor of more than 1000,
(The exact ratio proved later to be 1836.15.) His m/g measurement, coupled with the
boldness of his two claims, 15 considered to be the "discovery of the electron.”
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As we ust discussed, a beam of electrons in a vacuumn can be deflected by a magnetic
field. Can the drifting conduction electrons in a copper wire also be deflected by a
magnetic field? In 1879, Edwin H. Hall, then a 24-year-old graduate student at the Johns
Hoplkins University, showed that they can. This Hall effect allows us to find out whether
the charge carriers in a conductor are positively or negatively charged. Beyond that, we
can measure the number of such carriers per unit volume of the conductor.

Figure 29-8a shows a copper strip of width &, carrying a current § whose conventional
direction is from the top of the figure to the bottom. The charge carriers are electrons and,
as we know, they drift (with drift speed v;) in the opposite direction, from bottom to top.
At the instant shown in Fig. 29-8q, an external magnetic field B, pointing into the plane of
the figure, has just been turned on. From Eq. 29-2 we see that a magnetic deflecting force
F, will act on each drifting electron, pushing it toward the right edge of the strip.

As time goes on, electrons will move to the right, mostly piling up on the right edge of
the strip, leaving uncompensated positive charges in fized positions at the left edge. The
separation of posttive and negative charges produces an electric field E within the strip,
pointing from left to right in Fig. 29-8b. This field will exert an electric force Fy on each
electron, tending to push it to the left.
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An equilibrium quickly develops ih which the electric force on each electron builds up until it just
cancels the magnetic force. When this happens, as Fig. 29-8b shows, the force due to B and the force
due to E are in balance. The drifting electrons then move along the strip toward the top of the page
with no further collection of electrons on the right edge of the strip and thus no further increase in the
electric field E.

FIGURE 29-8 A strip of copper catrying a
current / 1s immersed in a magnetic field B.
(@) The situation inmediately after the
magnetic field is turned on. The curved

X

xX

path that will then be taken by an electron

15 shown. () The situation at equilibrium,
which quickly follows. Note that negative
charges pile up on the right side of the strip,
leaving uncompensated positive charges on
the left. Thus the left side 1s at a higher
potential than the right side. (¢) For the
same current direction, if the charge carrers
were positively charged, they would pile up
on the right side, and the right side would be
at the higher potential.

x High x
x High x

X
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A Hall potenticd difference V 1s associated with the electric field across strip width d.
From Eq. 25-42, the magnitude of that potential difference is

V= Ed (209

By connecting a voltmeter across the width, we can measure the potential difference
between the two edges of the strip. Moreover, the voltmeter can tell us which edge is at
higher potential. For the situation of Fig. 29-8a, we would find that the left edge 1s at higher
potential, which 1s consistent with our assumption that the charge carriers are negatively
charged.

For a moment, let us make the opposite assumption, that the charge carriers in current i
are posiiively charged (Fig. 29-8¢). Convince yourself that as these charge carriers moved
from top to bottom in the strip, they would be pushed to the right edge by F; and thus that
the right edge would be at higher potential. Because that last statement is contradicted by
our voltmeter reading, the charge carriers must be negatively charged.

Now for the quantitative part. When the electric and magnetic
forces are in balance (Fig. 29-8b), Eqs. 29-1 and 29-3 give us

el = ev,B. (29-10)
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From Eq. 27-7, the drift speed v; is

he neA (29_ | l)
in which J (= i/4) 1s the current density in the strip, A 1s the cross-sectional area of the strip,
and » 1s the number density of charge carriers (their number per unit volume).
In Eq. 29-10, substituting for B with Eq. 29-9 and substituting for v; with Eq. 29-11, we
obtain

in which ! (= A/d) is the thickness of the strip. Thus we can find » in terms of quantities that
WE Can measure.

It 15 also possible to use the Hall effect to measure directly the dnft speed v, of the charge
carriers, which you may recall is of the order of centimeters per hour. In this clever experiment,
the metal strip 1s moved mechanically through the magnetic field in a direction opposite that of
the drift velocity of the charge carriers. The speed of the mowving strip 1s then adjusted until the
Hall potential difference vanishes. At this condition, with no Hall effect, the velocity of the
charge carriers with respect to the magnetic field must be zero. 5o the velocity of the strip must
be equal in magnitude but opposite in direction to the velocity of the negative charge carriers.
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SAMPLE PROBLEM 29-2

Figure 29-9 shows a solid metal cube, of edge length d = 1.5 cm, moving in the positive
y direction at a constant velocity v of magnitude 4.0 m/s. The cube moves through a
uniform magnetic field B of magnitude 0.050 T and pointing in the positive z direction.

(a) Which cube face is at a lower electric potential and which 1s at a higher electric
potential because of the motion through the field?

SOLUTION: When the cube first began to move through the magnetic field, the
conduction electrons within the cube also began to move through the field. Because of
their motion, they experienced a force Fy given by Eq. 29-2. In Fig. 29-9, F, acts in the
negative direction of the x axis. This means that some of the electrons were deflected by
F; to the (hidden) left cube face, making that face negatively charged and the right face
postitvely charged. This charge separation produces an electric field E directed from the
right face toward the left face.
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Thus, the left face is at lower potential and the right face is at higher potential.

(b) What 1s the potential difference ¥ between the faces of higher and lower electric potential?

SOLUTION: The electric field E that 15 produced by the charge separation causes a force Fgto act
on the electrons; By s directed toward the right cube face, in the direction opposite that of force F;.
Equilibrium, in which F; = F; | 1s reached quickly after the cube begins to move through the
magnetic field. From Eqs. 29-1 and 29-3, we then have i

el = evB,
mubstituting for B with Eq. 29-9 (¥ = Ed) then yields
V = avB. (29-13)

mubstituting the given data, we now find

V = (0.015 m){4.0 m/s){0.050 T)

= 0,0020 ¥ = 3.0 mV¥, ( Answer)
FIGURE 29-9 Sample Problem 29-2.

A solid metal cube of edge length d
moves at constant velocity v through
a uniform magnetic field B.
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v/

CHECKPOINT 3:

The figure shows a metallic, rectangular solid that 1s to move at a certain speed v through
the uniform magnetic field B. Its ditnensions are multiples of @, as shown. You have six
choices for the direction of the velocity of the solid: it can be parallel to x, p, orz, in
either the positive or negative direction. (a) Rank the stz choices according to the
potential set up across the solid, greatest first. (b) For which choice is the front face at

lower potential?
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29-5 A CIRCULATING CHARGED PARTICLE

If a particle moves in a circle at constant speed, we can be sure that the net force acting on
the particle 15 constant in magnitude and points toward the center of the circle, always
perpendicular to the particle's velocity. Think of a stone tied to a string and whirled in a
circle on a smooth horizontal surface, or of a satellite moving in a circular orbit around
Earth. In the first case, the tension in the string provides the necessary force and
centripetal acceleration. In the second case, Earth's gravitational attraction provides the
force and acceleration.

Figure 29-10 shows another example: a beam of electrons 1s projected into a chamber
by an electron gun G. The electrons enter in the plane of the page with velocity v and move
in a region of uniform magnetic field B directed out of the plane of the figure. As a result,
a magnetic force F; = gv x B continually deflects the electrons, and because v and B are
perpendicular to each other, this deflection causes the electrons to follow a circular path.
The path 15 wistble in the photo because atoms of gas in the chamber emnit light when some
of the circulating electrons collide with them.




m A CIRCULATING CHARGED PARTICLE

We would like to determine the parameters that
characterize the circular motion of these electrons,
or of any particle of charge magnitude ¢ and mass
m moving perpendicular to a uniform magnetic field
B at speed v. From Eq. 29-3, the force acting on
the particle has a magnitude of gv5. So from
Newton's second law applied to uniform circular
motion (Eq.6-20),

(29-14)

Figure 29-10 Electrons circulating in a chamber

containing gas at low pressure (their path is the glowing circle). A uniform magnetic field B, pointing
directly out of the plane of the page, fills the chamber. Note the radially directed magnetic force Ej: for
circular motion to occur, E, must point toward the center of the circle. Use the right-hand rule for cross
products to confirm that E, = gv x B gives E, the proper direction.
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we have

(29-15)

b (radius) (29-16)

2y 3 2wy 2Tm

= = = iod). 29-17
T B ey PERd (D
The frequency fis
1 4B
f= T 5 (frequency) (29-18)

The angular frequency o of the motion is then

B
@ = 2mf= i (angular frequency). (29-19)
"
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The quantities 7, £ and o do not depend on the speed of the particle (provided that speed
is much less than the speed of light). Fast particles move in large circles and slow ones in
small circles, but all particles with the same charge-to-mass ratio g/m take the same time I
(the period) to complete one round trip. Using Eq. 29-2, you can show that if you are
looking in the direction of B, the direction of rotation for a positive particle is always
counterclockwise, that for a negative particle is always clockwise.

Helical Paths

If the velocity of a charged particle has a component parallel to the (uniform) magnetic
field, the particle will move in a helical path about the direction of the field vector. Figure
29-11a, for example, shows the velocity vector v of such a particle resolved into two
components, one parallel to B and one perpendicular to it:

vy=veosg and v, =wsing.  (29-20)

The parallel component detertnines the pitch p of the helix, that 15, the distance between
adjacent turns (Fig. 29-115). The perpendicular component determines the radius of the
helix and 1s the quantity to be substituted for v in Eq. 29-16.
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(@)

FIGURE 29-11 (@) A charged particle moves in
a magnetic field, its velocity making an angle ¢
with the field direction. (&) The particle follows
a helical path, of radius ¥ and pitch p. (¢) A
charged particle spiraling in a nonuniform
magnetic field. (The particle can become
trapped, spiraling back and forth between the
strong field regions at either end.) Note that
the magnetic force vectors at the left and
right sides have a component pointing

toward the center of the figure.
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Figure 29-11¢ shows a charged particle spiraling in a nonuniform magnetic field. The
more closely spaced field lines at the left and right sides indicate that the magnetic field is
stronger there. When the field at an end is strong enough, the particle "reflects” from that
end. [f the particle reflects from both ends, it 15 said to be trapped in a magnetic boitle.

Electrons and protons are trapped in this way by the terrestrial magnetic field,
forming the Vam Allen radiation belfs, which loop well above Earth's atmosphere,
between Earth's north and south geomagnetic poles. The trapped patticles bounce back
and forth, from end to end of the magnetic bottle, within a few seconds.

When a large solar flare shoots additional energetic electrons and protons into the
radiation belts, an electric field 1s produced in the region where electrons normally reflect.
This field eliminates the reflection and drives electrons down into the atmosphere, where
they collide with atoms and molecules of air, causing that air to emit light. This light
fortns the aurora-a curtain of light that hangs down to an altitude of about 100 km. Green
light 15 ernitted by oxygen atoms, and pink light 15 emitted by nitrogen molecules, but often
the light 15 so din that we percewve only white light.

An auroral display extends in an arc above Earth in a region called the aurorad ovad
(Figs. 29-12 and 29-13). Although the display 15 long, it 15 less than | km thick (north to
south) because the paths of the electrons producing it converge as the electrons spiral
down the converging magnetic field lines (Fig. 29-12).
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FIGURE 29-12 The auroral oval surrounding Earth's
geomagnetic north pole (in northwestern Greenland)
IMagnetic field lines converg toward that pole.
Electrons moving toward Earth are "caught by" and
spiral around these field lines, entering the terrestrail
atmosphere at high latitudes and producing aurora
within the oval
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FIGURE 29-13 A false-color image of aurora inside
the north auroral oval, recorded by the satellite
Dynarnic Explorey, using ultraviolet light ernitted

by oxygen atoms excited in the aurora. The sun-lit
portion of Earth is the crescent at the left.
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SAMPLE PROBLEM 29-3

Figure 29-14 shows the essentials of a mass spectrometer, which can be used to
measure the mass of an ion: an ion of mass m (1o be measured) and charge g is
produced in source .S' The unma]ly sta'uona:y ion 1§ accelerated by the electric nr-l d

which a umform mdgw:t.n_. hr:ll.l B 1s perpendicular to the path of the ion. The
magnetic field causes the ion to move ih a semicircle, striking (and thus altering) a
photographic plate at distance x from the entry slit. Suppose that in a certain trial

B=230.000 mT and ¥ = 1000.0 V and ions of charge g = +1.6022 x 107 C strike
the plate at x = 1.6254 m. What is the mass m of the mdividual 1ons, in unified atomic
mass units (1 u=1.6605 x 104 kg)?

SOLUTION: We need to relate the 1on mass m to the measured distance x in Fig.
29-14. To do so, we first note that x = 2r, where r 1s the radius of the setnicircular
path taken by the 1on. Then we note that r 15 related to mass m by ¥ = rvig5 (Eq.
29-16), where v is the speed of the 1on upon entering and then moving through the
magnetic field.
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FIGURE 29-14 Sample Problem 29-3. Essentials of a mass spectrometer. & positive ion,
after being accelerated from its source S by potential difference V, enters a chamber of
uniform magnetic field B. There it travels through a setnicircle of radius ¥ and strikes a
photographic plate at a distance x from where it entered the chamber.
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We can relate the speed v to the accelerating potential ¥ by applying the law of conservation of
energy to the ion: its kinetic energy %mv2 at the end of the accleration 15 equal to its potential
energy gV at the start of the acceleration. Thus

vt = gV

and il 26V (29-21)
-

mubstituting this into Eq. 29-16 gives us

oy om 2qV 1 12mV
B ¢ ¥ m qu'

4 vV
=2r = 7 T
molving this for m and substituting the given data yield
Blgr2
8V
_ (0.030000 T)% 1.6022 X 10-19 C)(1.6254 m)?

8(1000.0 V)
= 33863 X 10~ kg = 20303 0. (Answer)

m:
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SAMPLE PROBLEM 29-4

An electron with a kinetic energy of 22.5 eV moves into a region of uniform magnetic field B
of magnitude 4.55 x 10*T. The angle between the directions of B and the electron's velocity
v is 65.5°. What 1s the pitch of the helical path taken by the electron?

SOLUTION: The pitch p is the distance the electron travels parallel to the magnetic field B
during one period T of revolution. That distance is v, I, where ), is the electron’s speed

parallel to B. Using Eqs. 29-20 and 29-17, we find that
2mm

2 =wl=(vcos ¢) Q_B (29-22)
We can calculate the electron's speed v from its kinetic energy as we did for the proton in
mample Problem 29-1. (The kinetic energy of 22.5 eV 1s much less than the electron's rest

energy of 5.11x1 0° &V, so we need not use the relativistic formula for the kinetic ENergy.)
We find that v = 2.81 x 10° mys. mubstituting this and known data in Eq. 29-22 gives us

p = (2.81 X 10%mis)(cos 65.59)

27(8.11 X 10-31 kg)
(1.60 X 10-® C)@.55 X 104 T)

= 0,16 cm. (Answer)
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29-6 CYCLOTRONS AND SYNCHROTRONS

What 15 the structure of matter on the smallest scale? This question has always intrigued
physicists. One way of getting at the answer 15 to allow an energetic charged particle (a
proton, for example) to slam into a solid target. Better yet, allow two such energetic protons
to collide head-on. Then analyze the debris from many such collisions to learn the nature of
the subatomic particles of matter. The Nobel Prizes in physics for 1976 and 1984 were
awarded for just such studies.

How can we give a proton enough kinetic energy for such an experiment? The direct
approach s to allow the proton to "fall" through a potential difference V, thereby increasing
its kinetic energy by eV, As we want higher and higher energies, however, it becomes more
and more difficult to establish the necessary potential difference.

A better way is to arrange for the proton to circulate in a magnetic field, and to give it a
modest electrical "kick" once per revolution. For example, if a proton circulates 100 tines in
a magnetic field and receives an energy boost of 100 keV every time it completes an orbit, it
will end up with a kinetic energy of (1000100 keV) or 10 MeV. Two very useful devices
are based on this principle.
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The proton spnchrotron is designed to meet these two difficulties. The magnetic field 5 and
the oscillator frequency 7. , instead of having fizxed values as in the conventional cyclotron, are
made to vary with time during the accelerating cycle. When this 15 done propetly, (1) the
frequency of the circulating protons remains in step with the oscillator at all times, and (2) the
protons follow a circular-not a spiral-path. Thus the magnet need extend only along that
circular path, not over some 4 x 10° m®. The circular path, however, still must be large if high
energies are to be achieved. The proton synchrotron at the Fermi National Accelerator
Laboratory (Fermilab) in [llinois (Fig. e .

29-16) has a circumference of 6.3
kmand can produce protons with
energies of about 1 TeV (= 10* eV

FIGURE 29-16
An aerial view of Ferrilab.
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29-T MAGNETIC FORCE ON
A CURRENT-CARRYING WIRE

We have already seen (in connection with the Hall effect) that a magnetic field exerts a
sideways force on moving electrons in a wire. This force must be transmitted to the wire
itself, because the conduction electrons cannot escape sideways out of the wire.

InFig. 29-17a, a vertical wire, carrying no current and fized in place at both ends,
extends through the gap between the vertical pole faces of a magnet. The magnetic field
between the faces points outward from the page. In Fig. 29-175, a current 1s sent
upward through the wire; the wire deflects to the right. In Fig. 29-17¢, we reverse the
direction of the current and the wire deflects to the left.

Figure 29-18 shows what happens inside the wire of Fig. 29-17. We see one of the
conduction electrons, drifting downward with an assumed drift speed v, . Equation 29-3,
in which we must put @ = 90°, tells us that a force E, of magnitude ey; B must act on
each such electron. From Eq. 29-2 we see that this force must point to the right. We

expect then that the wire as a whole will experience a force to the right, in agreement
with Fig. 29-175.
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FIGURE 29-17 A flexible wire passes between the

pole faces of a magnet (only the farther pole face
is shown). (@) Without current in the wire, the
wire 15 straight. () With upward current, the wire
is deflected rightward. (¢) With downward current,
the deflection is leftward. The connections for
getting the current into the wire at one end and out
of it at the other end are not shown.
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If, in F1g. 29-18, we were to reverse either the direction of the magnetic field or the
direction of the current, the force on the wire would reverse, pointing now to the left. Note
too that it does not matter whether we consider negative charges drifting downward in the
wire (the actual case) or posiitve charges drifting upward. The direction of the deflecting
force on the wire 1s the same. We are safe then in dealing with the conventional direction
of current, which assumes positive charge carriers.

G O
FIGURE 29-18 .
A close-up wiew of a section of the wire of L. il e}
Fig 29-17b. The current direction is upward, . E
which means that electrons drift downward. ¢ |
A magnetic field that emerges from the plane \_!___-_;3-____;__‘
of the page causes the electrons and the wire o |
to be deflected to the right. o §
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Consider a length L of the wire in Fig. 29-18. The conduction electrons in this section
of wire will drift past plane xx in Fig. 29-18 i a time ¢ = Liv; . Thus in that time a
charge given by i
g=ud=;—
Vo
will pass through that plane. Substituting this into Eq. 29-3 yields

Fp = gqv, B sin ¢

L
= 2y, B sin 90°

Vi

o F, ={LB, (29-25)

This equation gives the force that acts on a segment of a straight wire of length L,
carrying a current § and inmersed in a magnetic field B that 1s perpendicular to the
WIE,
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If the magnetic field 1s not perpendicular to the wire, as in Fig. 29-19, the magnetic
force is given by a generalization of Eq. 29-25:

| Fr=:LXB (force on a current).(29-26) '

Here L 15 a length vector that points along the wire segment in the direction of the
(conventional) current.

Equation 29-26 15 equivalent to Eq. 29-2 in that either can be taken as the defining
equation for B. In practice, we define B from Eq. 29-26. It 1s much easier to measure the
magnetic force acting on a wire than that on a single moving charge.

FIGURE 29-19 A wire cartrying current / makes an angle
@ with magnetic field B. The wire has length L in the
field and length vector L (in the direction of the current).
A magnetic force Fy =L x B acts on the wire.
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If a wire 15 not straight, we can imagine it broken up into small straight segments and
apply Eq. 29-26 to each segment. The force on the wire as a whole is then the vector
sum of all the forces on the segments that make it up. In the differential limit, we can
write

dF, = idL X B, (29-27)

and we can find the resultant force on any given arrangement of currents by integrating
Eq. 29-27 over that arrangement.

In using Eq. 29-27, bear in mind that there 15 no such thing as an isolated
current-carrying wire segment of length dL. There must always be a way to introduce
the current into the segment at one end and take it out at the other end.
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SAMPLE PROBLEM 29-7

Figure 29-21 shows a length of wire with a central setnicircular arc, placed ina
uniform magnetic field B that points out of the plane of the figure. If the wire carmies a
current {, what resultant magnetic force F acts on o7

dL :
6 o L3 k] I ‘ £ .
dF sinﬂ—\\|< | :\"'AF
/ \
,"' s .{i@.l. »

\
v )

i
| l’ i
@ w FB. L

FIGURE 29-21 Sample Problem 29-7. A wire segment carrying a current 7 1 immersed
in a magnetic field. The resultant force on the wire is directed downward.
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SOLUTION: The force that acts on each straight section has the magnitude, from Eq.
20-25, B e D
and points down, as shown by F, and F; in Figure 29-21.
A segment of the central arc of length dL has a force dF acting on it, whose
magnitude 15 given by
dF = (B dl = {B(R d¢)

and whose direction 15 radially toward point O, the center of the arc. Only the downward

component dF sin & of this force element i1s effective. The horizontal component 1s
canceled by an oppositely directed horizontal component associated with a symmetrically
located segment on the opposite side of the arc.
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Thus the total force on the central arc points down and is given by

i f”dp sin § = J" (BR df)sin 0
0 0

= iBRJ sin g d¢ = 2iBR.
0

The resultant force on the entire wire 15 then
F=R+F,+F;,=i{B+ 2BR + LB
= 2i8(L + R). (Answer)

Note that this force is equal to the force that would act on a straight wire of length
AL + R). This would be true no matter what the shape of the central segment.
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SAMPLE PROBLEM 29-8

Figure 29-22a shows a wire carrying a current § = 6.0 A in the positive direction of the x
axis and Iying in a nonuniform magnetic field given by B = (2.0 T/m)xi + (2.0 T/m)xj
with B in teslas and x in meters. What is the net magnetic force F on the section of the
wire between x = 0 and x = 2.0 m?

FIGURE 29-22 Sample Problem 29-8.
(@) A wire with current / lies ih a non- B
uniform magnetic field B. (b) An | Rl /V
element of the wire, with differential R — T T DR o
length vector dZ and length dx. (¢) (a) J

The differential force dF acting

on the element of (&) due to the B

magnetic field, the force is directed _/ AF
out of the page. (f) i (e) L.

> 1L,
tlx ]
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SOLUTION: Because the field varies along the section of wire, we cannot just substitute
the data into Eq. 29-26, which holds only for a uniform magnetic field B. Instead, we must
mentally divide the wire into differential lengths and then use Eq. 29-26 to find the
differential force dF;on each length. Then we can sum these differential forces to find the
net magnetic force Fy on the full section of wire.

Figure 29-22b shows a differential length vector @£ along the wire in the direction of

the current; the wvector has length dx and points in the positive direction of the x asis. Thus
we can write this vector dZ as

dL = dxi. (29-28)

(Be careful not to confuse the unit vector i with the current i) Now, by Eq. 29-26, the
differential force dF; on the length dx of the wire is

dF, = idL X B
= i(dxi) X (2.0xi + 2.0xj)
= i dx[2.0x(0 X i) + 2.0x(i X j)]
= idx[0 + 2.0xK] = 2.0 dxk,  (29-29)
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where the constant 2.0 has the unit teslas per meter. From this result we see that the
magnetic force does not depend on the x component of B (because that component 1s
along the direction of the current). We also see that the magnetic force dF; on length
dx of the wire is in the posttive direction of the z axis (out of the page in Fig. 29-22¢)
and has magnitude dF, = (2.0 T/m)ix dx.

Because the direction of the force dF is the same for all the differential lengths
dr of the wire, we can find the magngude of the total force by summing all the
differential force magnitudes d¥,. To do so, we integrate dF, fromx=0tox=20m
and then substitute the given data. We get

201m
de J' (2.0 Tim)ix

201
= (2.0 T'm)i [lxz] = (2.0 T/m)(6.0 A)(3)(2.0 m)?
0

=24 (T Am) =24 N, (Answer)
This force 15 directed along the positive direction of the z asis.
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29-8 TORQUE ON A CURRENT LOOP

Nuch of the world's work 15 done by electric motors. The forces behind this work are the
magnetic forces that we studied in the preceding section, that 1s, the forces that a magnetic
field exerts on a wire that carries a current.

Figure 29-23 shows a stmple motor, consisting of a single current-carrying loop
immersed in a magnetic field B. The two magnetic forces F and -F combine to exert a
torgque on the loop, tending to rotate it about its central axis. Although many essential details
have been omitted, the figure does suggest how the action of a magnetic field, exerting a
torque on a current loop, produces the rotary motion of the electric motor. Let us analyze
the action.

FIGURE 29-23 The elements of an electric
motor. A rectangular loop of wire, carrying
a current and free to rotate about a fixed
axis, 1s placed in a magnetic field. A
commutator (not shown) reverses the
direction of the current every half-
revolution so that the magnetic torque
always acts in the same direction.
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Figure 29-24a shows a rectangular loop of sides @ and b, carrying a current / and immersed
in a uniform magnetic field B. We place it in the field so that its long sides, labeled | and 3, are
perpendicular to the field direction (which 15 into the page), but its short sides, labeled 2 and 4,
are not. Wires to lead the current into and out of the loop are needed but, for simplicity, they
are not shown.

To define the orientation of the loop in the magnetic field, we use a normal vector n that is
perpendicular to the plane of the loop. Figure 29-24b shows a right-hand rule for finding the
direction of n. Point or curl the fingers of your right hand in the direction of the current at any
point on the loop. Your extended thumb then points in the direction of the normal vector n.

The normal vector of the loop 1s at an angle 8 to the direction of the magnetic field B, as
shown in Fig. 29-24¢. We wish to find the net force and net torque acting on the loop in this
orientation.

The net force is the vector sum of the forces acting on each of the four sides of the loop.
For side 2 the vector L in Eq. 29-26 points in the direction of the current and has magnitude .

The angle between L and B for side 2 (see Fig. 29-24¢) 15 90° — 8. Thus the magnitude of the
force acting on this side 1s

F,=1bBsin(90° — &) = 1bB cos 4. (29-30)
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FIGURE 29-24 A rectangular loop, of length @ and width » and carrying a current i, 18
placed in a uniform magnetic field. A torque T acts to align the normal vector n with the
direction of the field. (@) The loop as seen by looking in the direction of the magnetic field.
(b) A perspective of the loop showing how a right-hand rule gives the direction of n, which
is perpendicular to the plane of the loop. (¢) A side view of the loop, from side 2. The loop
rotates as indicated.
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You can show that the force F acting on side 4 has the same magnitude as F, but points
in the opposite direction. Thus F, and F, cancel out exactly. Their net force is zero and,
because their common line of action 1s through the center of the loop, their net torque is
also zero.

The situation 1s different for sides 1 and 3. Here the common magnitude of F and E, 1s
iaB, and the two forces point in opposite directions so that they do not tend to move the
loop up or down. However, as Fig. 29-24¢ shows, these two forces do not share the
same line of action so they do produce a net torque. The torque tends to rotate the loop so

as to align its normal vector n with the direction of the magnetic field B. That torque has
moment arm (b/2) sin & about the center of the loop. The magnitude ©* of the torque due
to forces | and F; is (see Fig. 29-24¢)

b b
T = (IOI.B ESin 8) + (IOI.B ESin 8)

= 1abb sin 8.
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REVIEW & SUMMARY

Magnetic Field B
A magnetic field B is defined in terms of the force F, acting on a test particle with
charge ¢ moving through the field with velocity v.

F.=¢v XB. (29-2)

The 51 unit for B 1s the tesla (T): | T =1 Nf{Arm) = 10t gauss.

The Hall Effect

When a conducting strip of thickness ! carrying a current / 15 placed in a magnetic field B,
some charge carriers (with charge ¢) build up on the sides of the conductor, creating a
potential difference ¥ across the strip. The polarity of ¥ gives the sign of the charge
carriers; the number density n of charge carriers can be calculated with

B

=— 29-12
TR (29-12)

h




29

REVIEW

& SUMMARY

A Charged Particle Circudating in a Magnetic Field
A charged particle with mass m and charge magnitude ¢ moving with velocity v

perpendicular to a magnetic field B will travel in a circle. Applying Newton's second law
to the circular motion yields 5

mv
g8 = —, (29-15)
I
from which we find the radius r of the circle to be
_my
S Q—B (29-16)
The frequency of revolution # the angular frequency @, and the period of the motion I are
gventy o 1 g8
f=—=== o (29-19, 29-18, 29-17)

20 T 2mm
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Cyclotrons and Synchrotrons

A cyclotron 1s a particle accelerator that uses a magnetic field to hold a charged patticleina
circular orbit of increasing radius so that a modest accelerating potential may act on the
particle repeatedly, providing it with high energy. Because the moving particle gets out of step
with the oscillator as its speed approaches that of light, there 15 an upper limit to the energy
attainable with the cyclotron. A synchrotron avoids this difficulty. Here both 5 and the
oscillator frequency 7. are programmed to change cyclically so that the particle not only can
go to high energies but can do so at a constant orbital radius.

Magnetic Force on a Current-Carrying Wire
A straight wire carrying a current / in a uniform magnetic field experiences a sideways force

F =:LxXB (29-26)
The force acting on a current element / dZ in a magnetic field is
dFy = 14l X B, (29-27)

The direction of the length vector L or dZ 1s that of the current ;.
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Torgue on a Current-Carrying Coil

A coil (of area A and carrying current /, with &V turns) in a uniform magnetic field B will
experience a torque T given by

T=pXB, (29-35)

Here ¢ 1s the magnetic dipole moment of the coil, with magnitude x4 = A%A and
direction given by a right-hand rule.

Orientation Energy of a Magnetic Dipole
The magnetic potential energy of a magnetic dipole in a magnetic field 1s

U(#) = —pB. (29-36)

p e
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31-1 Calculating the Magnetic Field Due to a Current

v The Biot-Savart law is a prescription for calculating the magnetic field of a current. To
calculate the magnetic field produced at any point P by a wire carrying a current i, first
choose an infinitesitnal element ds of the wire, in the same direction as the current. Draw

the displacement vector r from the selected current ele_rgent to P. The field produced at P
) 1S X 1T

by the current element is given by 4p _ (.U“U
4 3
The field of the element 1s perpendicular to both ds and r. To find the total field at P, sum

v (integrate) the contributions from all elements of the wire.
The constantyy, 1s called the permeability constant and its value is exactly 47 x10 g
m/A. Do not confuse the symbol with that for the magnitude of a magnetic dipole moment

( 4 without a subscript)

In Section 30-1 of the text, the Biot-Savart law 1s used to find an expression for the
magnitude of the magnetic field produced by a long straight wire carrying current 1. Each
infinitesimal element of the wire produces a field in the same direction so the

magnitude of the total field 1s the sum of the magnitudes of the fields

produced by all the elements. Go over the calculation carefully. o

The result 1s By= i / 27 K where K is the perpendicular 2 B
distance from the wire to the field point. Main Text  Study Guide Menu
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30-2 Two Parallel Currents

V The expression for the field of a long straight wire can be combined with the expression for
the magnetic force on a wire, developed in the last chapter, to find an expression for the force

exerted by two parallel wires on each other. The magnetic field produced by one wire at a
point on the other wire is perpendicular to the second wire. If the wires are separated by a
distance d and carry currents i, and i, , then the magnitude of the force per unit length of
one on the other is given by F /L =, & & / 27d If the currents are in the same direction,
the wires attract each other; if the currents are in oppostte directions, they repel each other.
The forces of the wires on each other obey Newton's third law: they are equal ih magnitude
and oppostte in direction.

Majﬁ Text  Study Guide Menu
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303 STUDY GUIDE -
30-3 Ampere's Law

Ampere's law tells us that the integral of the tangential component of the magnetic field
around any closed path is equal to the product of 14y and the net current that pierces the

loop. Mathematically, for any closed path, B.ds= pgi
|

where ds is an infinitesimal displacement vector, tangent to the path. The integral on the left
side 15 a path integral around a closed path, called an Amperian path. The current / on the
right side is the net current through a surface that 15 bounded by the path. For example, if
the path 1s formed by the edges of a page, then / 15 the net current through the page. The
Amperian path need not be the boundary of any physical surface and, in fact, may be
purely imaginary. The surface need not be a plane.

To apply Ampere's law, choose a direction (clockwise or counterclockwise) to be used in
evaluating the integral on the left side. The choice is immaterial but it must be made since it
determines the direction of ds. If the tangential component of the field 1s in the direction of
ds, then the integral is positive, if it is in the opposite direction, the integral 15 negative.
Now, cutl the fingers of your right hand around the loop in the direction chosen. Your
thumb will point in the direction of positive current. Examine each current through the
surface and algebraically sum themn. If a current arrow 1s in the :

direction your thumb pointed, it enters the sum with a positive £
sign; if it is in the opposite direction it enters with a negative sign.  ypain Test

—arnn
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Solenoids and Toroids

Ampere's law can be applied to a solenoid, a cylinder tightly wrapped with a thin wire. For an
ideal solenoid (long and tightly wrapped), the magnetic field outside is negligible and the field
inside s uniform and is parallel to the axis.

As the Amperian path, take a rectangle with one side, of length A, inside the solenoid and
parallel to its axis, and the opposite side outside the solenoid. The first of these sides
contributes 5Bh to the left side of the Ampere's law equation and the other three sides of the
rectangle contribute zero. Thus, @B - ds =5h. If the solenoid has n turns of wire per unit
length, then the number of turns that pass through the surface bounded by the Amperian path
is nh. Each carries current / so the right side of the Ampere's law equation is ggnhi. Bh =
Lignhi, so B =uaoni.

Ampere's law can also be applied to a toroid, with a core shaped like a doughnut and wrapped
with a wire, like a solenoid bent so its ends join. The magnetic field is confined to the interior
of the core and the field lines are concentric circles centered at the center of the hole. The
Amperian path 1s a circle of radius r, inside the core and centered at the center of the hole.
The integral @B - ds i27r B and if there are A turns of wire, each carrying current / total
current through the surface bounded by the path 15 A% Thus, the -

Ampere's law equation is 298 = u M and 5 = gy (AN / 2y, The
field is zero inside the hole and outside the toroid.

——ary
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30-5 A Current-Carrying Coil as a Magnetic Dipole

V The Biot-5avart law can be used to show that the magnetic field produced by a circular loop
of wire of radius R and carrying current /, at a point on its axis of symmetry a distance z from
its center, is { P4

B(z)= —L0 .
2R+ 2) 2

For points far away from the loop (z >> R), the expression becomes B(z) = iR n z3,
which can be written in terms of the dipole moment of the loop: B(z) =up4/27z * Bis in
the direction of g for points above the loop (positive z) and in the opposite direction for
points below the loop (z negative). This expression is valid for the magnetic field of any
plane loop, regardless of its shape, for points far away along the axis defined by the direction
of the dipole moment.
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31-1 Two Symmetric Situations

When a current-carrying loop of wire 15 placed in a magnetic field, the field exerts a torque
on the loop and the loop rotates. The reverse also happens. If the loop initially has no
current but 1 then rotated in a magnetic field, current 1s induced in 1.

cem—
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31-2 Two Experiments

If a magnet 1s moved toward a closed loop of wire, current is induced in the wire. When the
magnet stops moving, the current stops. As the magnet 1s withdrawn, current 1 again induced.

The direction of the current is reversed when the direction of motion of the magnet is
reversed.

v If two loops of wire are close to each other and a changing current 1s produced in one, then

current is induced in the second loop.

In each of these cases, a changing magnetic field through a closed loop induces an emf around

the loop and this emf generates a current. The emf 1s induced only when the magnetic field
through the loop 15 changing or else when the loop 15 moving in a magnetic field.

Main Text  Study Guide Menu




KK  STUDY GUIDE- Faraday's Law of Induction

31-3 Faraday's Law of Induction

V The magnetic flux through a surface is defined by the integral

@B=/Bdﬁ

over the surface. Here dA 15 an infinitesimal wector area, normal to the surface. If the field
is uniform over the surface, then $2= BAcos8 whered is the angle between the field and

the normmal to the surface.

V The magnetic flux through any area is proportional to the number of magnetic field lines
through that area. Recall that the number of field lines through a small area perpendicular to
the field 15 proportional to the magnitude of the field and that the number of lines through

ay small area 15 proportional to the component 5, along a normal to the area.
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31-4 Lenz's Law

v

Lenz's law provides another way to determine the direction of an induced emf. Imagine that
the boundary of an area 15 a conducting wire and that an externally produced magnetic field
penetrates the area. When the field changes, a current is induced in the wire and the current
also produces a magnetic field. According to Lenz's law, the sign of the flux of the induced
current 1 the same as that of the externally produced flux if that flux is decreasing and is
opposite that of the externally produced flux if that flux 1s increasing. In the first case, the
magnetic field of the induced current is roughly in the same direction as the externally
produced field, in the second case, it 1 roughly in the opposite direction.

Once you have determined the direction of the magnetic field produced by the induced
current, you can determine the direction of the current itself and, hence, that of the emf.
Very near any segment of the loop, the field 15 quite sitnilar to the field of a long straight wire,
the lines are neatly circles around the segment. Use the right-hand rule explained in the last
chapter: curl your fingers around the segment so they point in the direction of the field in the
interior of the loop. That is, they should cutl upward through the loop if the field is upward
through the loop and they should curl downward if the field 15 downward. Your thumb will
then point along the segment in the direction of the current.

This 1s also the direction of the induced emf

-y
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31-5 Induction and Energy Transfers

An emf s also generated if all or part of the loop moves ih a manner that changes the flux
through it. If a loop 15 moved through a uniform field, the flux through it does not change and
no emf 1s generated. If, however, the field is not vniform, then the flux changes as the loop
moves and an emf 15 generated. Find an expression for the flux as a function of the position of
the loop, then differentiate it with respect to time to obtain d 5 /df. The emf cleatly depends on
the velocity of the loop. Either Lenz's law or the sign convention associated with Faraday's law
v can be used to find the direction of the emf '

muppose a closed loop is pulled with constant speed out of the region of a uniform magnetic
field, perpendicular to the loop, as shown below. At any instant, x is the length of the loop
within the region of the field and the flux through the loop 15 & = BLx. The emf generated
around it is £ = -5L dx / df = -BLv, where v 15 the speed of the loop. The emf s proportional

to the speed. — Py
| X X X 1
' T
, X X |
P x Ix  ox ! f —>
|
| X X 1 l
[ T -
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31-6 Induced Electric Fields

An electric field 1s always associated with a changing magnetic field and this electric field 1s

responsible for the induced emf. The relationship between the electric field E and the emf
around a closed loop 15 given by the integral

8=}gE-ds,

where ds 15 an infinitesimal displacement vector. The integral is zero for a conservative field,
such as the electrostatic field produced by charges at rest. The electric field induced by a

changing magnetic field, howewver, is non-conservative and the integral is not zero. For a
changing magnetic field, Faraday's law becomes

d&d
fuii 88

suppose a cylindrical region of space contains a uniform magnetic field, directed along the
axis of the cylinder, and that the field 15 zero outside the region. If the magnetic field

changes with time, the lines of the electric field it induces are circles, concentric
with the cylinder.

————
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31-7 Inductors and Inductance

v Current in a circuit produces a magnetic field and magnetic flux through the circuit. If the
circuit conststs of AV turns and the flux 1s the same through all of them, then its inductance

L is defined by N&;

L= ——,
{

where 115 the current that produces flux $z through each turn. Since & is proportional to i,
L does not depend on the current or flux. It does depend on the geometry of the circudt.

V The 51 unit of inductance is called the henry (abbreviated H). The quantity A% 1s called the
flux linkage.

V For an 1deal solenoid of length ! and cross-sectional area A, with » turns per unit length and
carrying current /, the magnetic field in the interior 15 given by B =unin, the flux through each
turn is given by &5 = BA = ggind, the flux linkage is Ndy = p,in %Al and the inductance

s
L=nld, /i=pn Al

——ny
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31-8 Self-Induction

When the current in a circuit changes, the flux changes and an emnf 1s induced in the circuit. If
the circuit has inductance L, the induced emf is
ds
= —-L—.
g d

Every circuit has an inductance, usually small, but there are electrical dewvices, called inductors,
that are used expressly to add inductance to a circuit. They usually consist of a coil of wire, like
a solenoid. The symbol for an inductor is gopga ..

The diagram below shows an inductor carrying current 1, directed from @ to ». The rest of the
circuit 15 not shown. If the current i1s increasing, then the emf induced in the inductor is from b
toward @ (« is the positive terminal); 1f 1t 1s decreasing, then the emf is from @ toward b (b 15 the

. Q00RO

0
NG b
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!
In either case, the potential ¥ at point b is given by
vy =V, - L difdf, whereV is potential at point ¢ and L is the
inductance.
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31-9 RL Circuits

Constider a circutt conststing of an inductor £, a resistor K, and an emnf ¢. Take the current
to be positive in the direction of the emf. The loop rule then gives ¢ - iR-L di /fdt=10.
Assume the source of emf ¢ 15 connected to the circuit at time = 0, at which time the

current 15 0. The solution to the loop equation is then
&
i =7 (1 = e“f‘“) ,

where ¢ = L/R iz the inductive time constant. This expression predicts i = 0 at =0, but
di / df 15 not zero then. It also predicts that long after the emf 1s connected, the current 15 i =
¢ /R, as if the inductor were not present. The rate at which the current increases to its final
value is controlled by the inductive time constant. The larger the time constant, the slower

the rate.

v The potential difference across the inductor is given by

di
V)= L—=ge H

and the potential difference across the resistor is given by 2 |
— . — o _ t !?_L T . =
VR(D iR= £ (l = ) ' Main Text  Study Guide Menu
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31-10 Energy Stored in a Magnetic Field

Energy must be supplied to buid up the magnetic field in an inductor, perhaps by a source of
emf. The energy may be considered to be stored in the magnetic field and can be retrieved

when the current and field decrease. If current / 15 ih an inductor with inductance L, the
energy stored is given by Up =%L:’2 :

¢ Multiply the loop equation for a series LR circuit by the current to obtain £ = i2R + Li difdt.

The quantity on the left is the rate with which the emf device 1s supplying energy to the circuit.

The first term on the right 15 the rate with which energy 1s dissipated in the resistor. The

second term on the right is the rate with which energy is being stored in the magnetic field of
the inductor.
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31-11 Energy Density of a Magnetic Field

v

The mductance of a solenoid with cross- sectmnal areaA length ! and »n turns per unit length is
L=taon * A1 and the energy stored is Uz = 2 L= 2 - LN 2412 Where: 15 the current. Bince
the magnetic field in the solenoid s B = i« ni, this can be written U3 =5 AHZLAU Al 1z the
volume of the solenoid, so the energy density (energy per unit volume) 1s
BE
URiSmm—
5 2

This expression gives the energy density stored in any magnetic field, not just the field of a
solenoid. The total energy stored in a field 1s the volume integral of the energy density.

o
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31-12 Mutual Induction

v The current in one circuit influences the current i another, although the two are not physically

connected. The current in the first circuit produces a magnetic field at all points in space and
thus 1s responsible for a magnetic flux through the second circuit. When the current in the first
circuit changes, the flux through the second circutt changes and an emf is ihduced in that
circudt.

v If the second circutt has A, turns and &4 1s the flux produced through it by the current i) 10

the first circuit, then If = Ny &1
21 =

i
i the mutual inductance of circuit 2 with respec% to circut 1. bimnilatly, the mutual
inductance of circuit 1 with respect to circuit 218 M =N 1<1> 2! i ,where¥ 1 1s the number of
turns in circwt 1,7, 15 the current in circutt 2, and € 5 1s the flux through circuit 1 produced
by the current in circuit 2. The two mutual inductances |, and M, are always equal and the
subscripts are not needed.

When the current /1 in circuit | changes at the rate dil/df, the emf

induced in circuit 2 is£2 = -M di! / df and when the current i in

circuit 2 changes at the rate di? / df, the emf induced in circuit 1is 7 3

B =M o -
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32-1 Magnets

The magnetic dipole 1s the simplest known magnetic structure. Magnetism arises from the
v dipole moments of electrons in materials, associated with their spins and orbital motions.

v Magnetic field lines exit a bar magnet from the end called the north pole and enter the end

called the south pole. The lines continue through the interior of the magnet to form closed
loops.

by the field that would be produced by a positive monopole (a north pole) at one end and a
negative monopole (a south pole) at the other but the field does not actually arise from
single monopoles but rather from magnetic dipoles associated with electron motion. As
proof that the field 1s not due to monopoles, the magnet can be cut in half with the result

that each half produces a field that is closely approximated as a dipole field. This process
can be continued to the atomic level with the same result.

| The magnetic field in the exterior of a permanent bar magnet can be closely approximated
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32-2 Gauss' Law for Magnetic Fields

v If the normal component of the magnetic field is integrated over a closed surface (one that
completely surrounds a volume), the result is zero no matter what closed surface 1s chosen.

That 1s,
fB dA= 0

for every closed surface. The direction of the infinitesitmal element of area dA is normal to the
surface. This 1s Gauss' law for magnetism.

The law does not necessarily mean that the magnetic field is zero at any point on the surface,

“ only that the total magnetic flux through any closed surface 15 zero. Usually the field is
essentially outward over some portions and essentially inward over others. Every magnetic
field line that enters any region also leaves that region: no field lines start or stop anywhere,
they are closed curves.

————
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32-4 Magnetism and Electrons

V Every electron has an intrinsic angular momentutn, often called its spin angular momentum or
stmply its spin. Only one component, usually taken to be the z component, can be measured.
It is R

S, = +— = 452729 x 10732 .5,
4w

where h 15 the Planck constant. & magnetic dipole moment is associated with spin and its z
component 18

e K e eh _24
hg z = mSz—q:4ﬂm—:|:9.2?x10 JET

where m 15 the electron mass. Since an electron s negatively charged, its dipole moment and
spin angular momentum are in opposite directions.

v Particle and atomic magnetic moments are often measured in units of the Bohr magneton
L iy =eh/4mn This is the magnitude of the electron spin dipole motment.
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Induction and Energy Transfers

V Three types of magnetic materials (diamagnetic, paramagnetic, and ferromagnetic) are discussed
in the following sections. All atoms are diamagnetic. A dipole moment 1s induced by an external
field. Some atoms are paramagnetic. They have permanent dipole moments but these are
randomly oriented in the absence of an external field. When an external field 1s turned on they
tend to align with the field. Ferromagnetic atoms also have permanent dipole motmnents, but they
align with each other even in the absence of an external field.

v Paramagnetism and ferromagnetism, when they occur, are much stronger than diamagnetism.

i

(" HISTORY )
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32-6 Diamagnetism

v

v

In the absence of an applied field, the atoms of a diamagnetic substance have no magnetic
dipole moments, but moments are induced when a field 15 applied. As an external field is turned
on, the orbits of the electrons change so the electrons produce an opposing field, in
accordance with Faraday's law. The direction of the magnetization (and the induced dipole
moments, on average) 15 opposite that of the local magnetic field, so the total magnetic field in
a diamagnetic material is less in magnitude than the applied field. For most diamagnetic
materials, the dipole field is extremely weak.

The effect occurs for all materials, but if the atoms have permanent dipole moments, the effect
of their alighment with the field dominates and the material is paramagnetic rather than
diamagnetic.

If the external field is not uniform, a diamagnetic material is repelled from a region of greater
field toward a region of lesser field.
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32-7 Paramagnetism

v

v

The magnetization of a uniformly magnetized object is its magnetic moment per unit volutne.
The 51 unit of magnetization 15 A/tn. If the substance is not uniformly magnetized, the
magnetization at a point in the object 1s the limiting value of the dipole moment per unit volume
as the volume shrinks to the point.

Atoms of paramagnetic materials have permanent dipole moments: the dipole moments of the
electrons in one of these atoms do not sumn to zero. When no external magnetic field 1s
applied, however, the magnetization of the material is zero because the atomic dipole moments
are randomly oriented. An external field aligns the atomic moments, and the substance
becomes magnetized. When the applied field is retnoved, the magnetization 1s quickly reduced
to zero by atomic oscillations, which randomize the moments.

When an external magnetic field 1s applied, the direction of the field produced by dipoles of the
material is in the same direction as the applied field, so the total field i the material is greater
in magnitude than the applied field.

According to Curie's law, the magnetization at any point in a paramagnetic substance
is directly proportional to the magnetic field 5 at that point and
inversely proportional to B

the absolute temperature T M=C (f) 2
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Ferromagnetism

Atoms of ferromagnetic materials have permanent dipole moments but unlike the atomic
moments of paramagnetic materials, they spontaneously align with each other. Iron is the best
known ferromagnetic material

The spontaneous alighment of dipoles in a ferromagnet 1s not due to the magnetic torque
exerted by one magnetic dipole on another. These torques are not sufficiently strong to
overcome thermal agitation that tends to randomize the dipole orientations. The source of dipole
alignment 1s in the quantum mechanics of electrons i solids.

For temperatures above its Curie temperature, a ferromagnetic substance 15 paramagnetic.
For iron, this temperature 1s 1043 K.

Ferromagnetic materials exhibit hysteresis. This may be detnonstrated by plotting the magnetic
field By, due to the atomic dipoles, as a function of the applied field 5, . See Fig. 32-14. If

the substance starts in the unmagnetized state and the external field is mcreased from zero, B

is nearly linear in By at first but then at higher applied fields, the slope becomes less. Eventually
the magnetization becomes saturated and By 15 constant. When the applied field 1s reduced, B
does not follow the same cutve downward and, in fact, when

B, =0, By, 1s not zero. A residual magnetism remains: the

material 15 magnetized even though there is no external field. oo : v
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32-9 Induced Magnetic Fields

v & changing electric field produces a magnetic field. The relationship 1s
d@g
B.ds= pge .

The left side 15 a path integral around a closed path. $p 1s the electric flux through the area
bounded by the path. In this form, the equation is called the Maxwell law of induction.

A sign convention 18 associated with the Maswell induction law. First, pick the direction of
dA to be used to compute the electric flux. It 1s usually chosen to make the flux positive.
Then, point the thumb of your right hand in the direction of dA; your fingers then curl

around the boundary in the direction of ds.

m\n’
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32-10 Displacement Current

v According to the Ampere-IMasxtwell law, a changing electric field in a region produces a magnetic
field around the boundary of the region, just as if a current passed through the region. In fact, the
| 4% o
quantity o ST
is called a displacement current. A displacement current is emphatically NOT a true current,
which consists of moving charges.

v For a cylindrical region of radius R containing a uniform changing electric field along its axis, the

displacement current through a circular loop of radius risiz = goav 4/ dt if r<R and is i
£,R 44 / dt is r>R. The direction of the displacement current is the same as the direction of
the field if X is increasing and oppostte the direction of the field if £ 1s decreasing.

v The equations for the magnetic field associated with the cylindrical region considered above are
fust like the equations for the magnetic field of a long straight wire, developed in Chapter 30, but
the true current / 15 replaced by the displacement current i; . That is, the field inside
the cylinder is B = g4z (¥ YR )27y and the field outside the
cylinder is 5 = pigizd / 2av, where i 4 is the total displacement
current in the cylinder.
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32-11 Maxwell's Equations

¢ Here 15 list of Mastwell's equations, including the displacement
current term in the Ampere-Maxwell law:

Gauss' law for electricity: f E.dA= _g_
=

Gauss' law for magnetism: f B.-dA= 0

Faraday's law of induction:
Y % E - ds

Ampere-Maswell law: fB ds = ugs+ ugep %

-~y
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