Forces in Magnetic Field

- Force on Current in Magnetic Field
- Forces between Currents
- Force on Moving Charges in Magnetic Field
- Magnetic Flux. Gauss's Theorem
- Work Done on Displacement of a Wire with Current in Magnetic Field
- Laws of Magnetic Circuits

Force on Current in Magnetic Field

Forces between Currents

$$F_{1} = I_{1}B_{2}dI\sin\frac{\pi}{2} = \frac{\mu_{0}\mu I_{1}I_{2}dI}{2\pi r}$$

$$F_{2} = I_{2}B_{1}dI\sin\frac{\pi}{2} = \frac{\mu_{0}\mu I_{2}I_{1}dI}{2\pi r}$$

Force on Moving Charges in Magnetic Field

$F = qvB\sin\alpha$ $\mathbf{F} = q[\mathbf{vB}]$

1. Charge moves at a right angle to a magnetic field

Force on Moving Charges in Magnetic Field (cont.)

Torque on a Coil in a Uniform Magnetic Field

 $F_1 = F_2 = BII$ M = Fb = BIIb = BIS

Magnetic Moment

 $\mathbf{M} = [\mathbf{p}_m \mathbf{B}]$

 $\mathbf{p}_m = IS\mathbf{n}$

Magnetic Flux. Gauss's Theorem

 $\Phi = \int BdS\cos\alpha \qquad \Phi = \int \mathbf{B}d\mathbf{S}$

 $\oint \mathbf{B} d\mathbf{S} = \mathbf{0}$

The magnetic flux through any closed surface is zero.

Work Done on Displacement of a Wire with Current in Magnetic Field

 $dW = F \cdot dx = IBIdx \sin \alpha$ $dW = IBdS = Id\Phi$

Work done by Ampere's force on moving a wire with current in a magnetic field, is equal to the product of the current and the increase of the magnetic flux due to the displacement of the wire.

Laws of Magnetic Circuits

$$B_g = \mu_0 H_g \qquad B_m = \mu_0 \mu H_m$$

Ampere's theorem: $H_g I + H_m L = NI$ $\frac{B_g I}{\mu_0} + \frac{B_m L}{\mu_0 \mu} = NI$

As $\Phi = \text{const}$ and S = const, $B_g = B_m$

$$\therefore B_g\left(\frac{I}{\mu_0} + \frac{L}{\mu_0\mu}\right) = NI$$

Laws of Magnetic Circuits (cont.)

$$\therefore \Phi = B_g S = \frac{NI}{\left(\frac{I}{\mu_0 S} + \frac{L}{\mu_0 \mu S}\right)}$$

NI is called usually the *magnetomotive force*, MMF.

 $\left(\frac{I}{\mu_0 S} + \frac{L}{\mu_0 \mu S}\right) \quad \text{- is called the$ *reluctance* $of the magnetic circuit.}$