Market economy and pubic policy 4

Yoshio Matsuki

Today

- Homework from last week
- Monica's indifference curve and price
- From utility function to demand curve in math.
- Introduction of Market Intervention by government

Homework 2 Translate to Ukrainian language

- Price Elasticity of Demand
- (Demand Elasticity)
- Price Elasticity of Supply
- (Supply Elasticity)
- Marginal rate of substitution

Homework *

 A consumer must pay \$10 per unit of good X for the first 5 units, but only \$5 per unit for each unit in excess of 5 units. How does the budget line look like?

Homework

- Monica spends her entire monthly income of \$600 on cosmetics and accessories.
- The price of cosmetic is \$30, and the price of accessory is \$10.
- If she consumes 12 cosmetics and 24 accessories, her MRS is 1A/1C. Is she in equilibrium at this point on her budget line?
- Show the result in a picture.

Marginal rate of substitution (MRS)

MRS: Other goods/Steak

Condition for the Maximum Utility

$$I = \sum_{i=1}^{n} P_{x_i} X_i \tag{1}$$

$$L = U(X_1, X_2, X_3, \dots X_n) + \lambda (I - \sum_{i=1}^{n} P_{x_i} X_i) \tag{2}$$

$$\frac{\partial L}{\partial X_i} = \frac{\partial U}{\partial X_i} - \lambda P_{x_i} = 0 \tag{3}$$

$$\frac{\partial L}{\partial \lambda} = I - \sum_{i=1}^{n} P_{x_i} X_i = 0 \tag{4}$$

$$\frac{\partial U}{\partial X_i} = \frac{P_{X_i}}{P_{X_i}} \tag{5}$$

$$\text{where, } i \neq j \text{ .}$$

2. Non-linear model (Cobb-Douglas function [1]):

$$U = \prod_{i=1}^{n} X_i^{C_i}$$
 where,

$$\sum_{i=1}^{n} C_i = 1.....$$

$$X_{i} = \frac{I}{P_{X_{i}}} \frac{C_{i}}{\sum_{i=1}^{n} C_{j}}...$$
(8)

$$\frac{C_i}{\sum_{j=1}^n C_j} = \beta_i \tag{29}$$

Cobb-Douglas 2 dimensional case

$$U = F^{\alpha}C^{1-\alpha}$$

$$I = FP_F + CP_C$$

$$L = F^{\alpha}C^{1-\alpha} + \lambda(I - FP_F - CP_C)$$

$$\frac{\partial L}{\partial F} = \alpha F^{\alpha-1}C^{1-\alpha} - \lambda P_F = 0$$

$$\frac{\partial L}{\partial C} = (1 - \alpha)F^{\alpha}C^{(1-\alpha)-1} - \lambda P_C = 0$$

$$\frac{\partial L}{\partial \lambda} = I - FP_F - CP_C = 0$$

$$F = \frac{\alpha I}{P_F}$$

$$C = \frac{(1 - \alpha)I}{P_C}$$

Price setting by government

How to respond to shortage?

- Divide?
- Non price rationing
 - First come, first serve
 - Waiting line = cost to consumer
- Quality deterioration
 - Show the product less attractive
 - Open fewer hours per day or fewer days per week
 - Self-service pumping
 - Eliminate special services, such as wiping windows
- Black market
 - With Q2, consumer could pay \$1.50
 - Penalties
- In a long run...

Governmental purchase apple case

The supply and demand for apples

Demand Supply

Price for pound	Quantity demanded per Year	Price per pound	Quantity supplied per year
\$0.90	100000	\$0.60	100000
0.80	110000	0.70	120000
0.70	120000	0.80	140000
0.60	135000	0.90	150000

What is the market equilibrium price and quantity?

Questions

- The government agrees to purchase as many pounds of apples as growers will sell to it at a price of \$0.80.
 - a. How much will the government purchase,
 - b. how much will consumers purchase, and
 - c. how much will be produced?

- a. Governmental purchase = $140\ 000 110\ 000 = 30\ 000$
- b. Consumer purchase = 110 000
- c. Produced apples = 140 000

Intervention by government Tax

Government purchase

Emission trade?

Intervention by government (1) Tax

Price Ceiling

Government purchase

Emission trade?

How is price made? Why it is changed?

In competitive market

Effect of food stamp program on

Excise subsidy vs. Lump-sum subsidy

Fixed-quantity subsidy: Education

Tax and Rebate Program

Investment in education and borrowing

Investment risk

Homework 1

- Suppose the government policy of purchasing apples remains in effect, but consumer demand increases by 10 percent (consumers will purchases 10 percent more at each price than they did before).
- What will be the effects on
 - a. total apple output,
 - b. purchases by consumers,
 - c. purchases by government, and
 - d. the price of apples?

Homework 2

Find the demand curves for each of 3 variables.

$$U = F^{\alpha} C^{\beta} S^{\gamma}$$

$$\alpha + \beta + \gamma = 1$$

Homework 3 Translate to Ukrainian language

- Governmental intervention
- Price ceiling
- Black market
- Rationing, Non price rationing
- Shortage
- Surplus