Workshop on the Advice on financial schemes for D\&D, RWM and SF at NPPs

DISCOUNTING MEANINGOPDISCOUNT RATE

Assoc. prof. Jaroslav Knápek

Ljubljana, 15-16 June 2011

DISCOUNTING

Money has time value

- money in different years should be recalculated to the same year to be comparable

Easy example: money (1000 EUR) now or next year, opportunity to invest for 10\% (e.g. interest rate on bank savings account)
money now equals next year $\quad 1000 \cdot(1+0,1)^{1}=1100$
money next year equals now $\quad 1000 \cdot(1+0,1)^{-1}=909,1$

CLASSICAL INVESTMENT

- Investment first, then project generates "money" - i.e. positive cash flows
- Discount has meaning of opportunity cost - i.e. return on other possible investment for given investor and given type of business (includes risk compensation)

DGR CASE

DGR case - reverse case investment

Reverse investment

- Money savings first - e.g. fee imposed on power generation
- Investment then follows
- Discount rate has meaning of possible and "safe" appreciation of cummulated financial means on Nuclear account

APPREACIATION OF MEANS ON NUCLEAR ACCOUNT

- Really existing money are cummulated on Nuclear Account
- They invested into financial products - e.g. into governmental bonds, bank savings account etc.
- Investment bring interest or coupon (form of interest) in nominal value (like savings)

DISCOUNT AND INFLATION

- Unfortunately we cannot exclude inflation from our calculations (when doing economic effectiveness calculation)
Business investment:
- our operational expenses are subject to inflation
- we pay income tax based on difference between revenues and cost
- revenues growth with the inflation, operational cost too (possibly differently), but depreciation as part of total cost are fixed
- if we neglect inflation, we overestimate role of depreciation as tax shield

DISCOUNT AND RAO MANAGEMENT

- Example. We need to do something in year 2061. Cost estimate in 2011 prices - e.g. 1000 EUR (if doing it now). How much it cost in 2061? How much money do I need now to have this amount in 2061?

$$
M_{2061}=1000 \cdot(1+0,02)^{50}=2691 \mathrm{M}_{\text {discounted }}=2691 \cdot(1+0,025)^{-50}=783,1
$$

Estimate, how much it would cost if done NOW
based on "how we would do it"
Estimate=1000 EUR, 2011 money

How much it cost in the year 2061?
Espenses are subject to inflation!
Average longterm inflation
e.g. 2%

Cost=2691 EUR, 2061 money

discounted
Discounted cost=783,1 EUR, 2011 base year

DISCOUNT - REAL AND NOMINAL

- Example as before. We try to avoid the inflation
- No influence of inflation on our 1000 EUR investment (i.e.

2061 prices equal to 2011 prices)

- But still we have to take into account appreciation of sources on nuclear account
- We have to take out inflation from the interest rate obtained (in nominal value) - discounting with real discount

$$
\begin{gathered}
(1+r)=(1+i) \cdot\left(1+r_{r}\right) \Rightarrow \frac{(1+0,025)}{(1+0,02)}-1=r_{r}=0,004902 \\
M_{\text {discounted }}=1000 \cdot(1+0,004902)^{-50}=783,1
\end{gathered}
$$

FEE AND INFLATION

$$
\begin{aligned}
& N P V=\sum_{t=1}^{T_{n}} C F_{t} \cdot\left(1+r_{n}\right)^{-t}=0 \quad C F_{t}=c_{\min t} \cdot Q_{t}-V_{t} \\
& \sum_{t=1}^{T_{n}} f e e_{t} \times Q_{t} \times\left(1+r_{n}\right)^{-t}=\sum_{t=1}^{T_{n}} \text { Expenses }_{t} \times\left(1+r_{n}\right)^{-t} \\
& f e e_{t}=f e e_{0} \cdot(1+\mathrm{inf})^{t} \text { and } \quad\left(1+r_{n}\right)=(1+\mathrm{inf}) \cdot\left(1+r_{r}\right)
\end{aligned}
$$

$$
\text { fee }_{0}=\frac{\sum_{t=1}^{T_{n}} \text { Expenses }_{t} \cdot\left(1+r_{n}\right)^{-t}}{\sum_{t=1}^{T_{n}} Q_{t} \cdot\left(1+r_{r}\right)^{-t}}
$$

For practical reasons we assume fee0 as the fee in first year and in next years this fee is increased with the inflation

- future cost are defined by the reference project, we need cumulative sum in given year
- fixed fee - would caused high fee at the beginning to avoid money shortage

