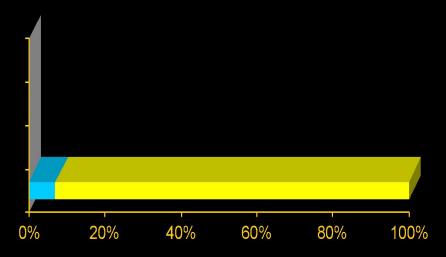

МЕДИЦИНСКАЯ ГЕНЕТИКА.

ЛЕКЦИЯ 2


Тема: СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ ОБ ОРГАНИЗАЦИИ И ФУНКЦИОНИРОВАНИИ ГЕНОМА ЧЕЛОВЕКА.

- полный объем Геном генетической информации любой биологической системы, определяющей передачу структурных функциональных признаков. Формализованный объем соматической человека составляет нить длиной около 3,8 метра или 3,5х10⁹ нуклеотидов. Этого количества ДНК достаточно для кодирования нескольких миллионов Однако, по многим независимым оценкам, истинное структурных генов находится пределах от 25 000 до 30 000.

2

Кодирующие последовательности ДНК занимают не более 3-10% всего генома.

Генетическая избыточность генома объясняется процессом эволюции и, повидимому, сопровождался накоплением изменений в структуре генома. Функции этой "избыточной" (junk) ДНК изучены не полностью.

Функции "избыточной" ДНК

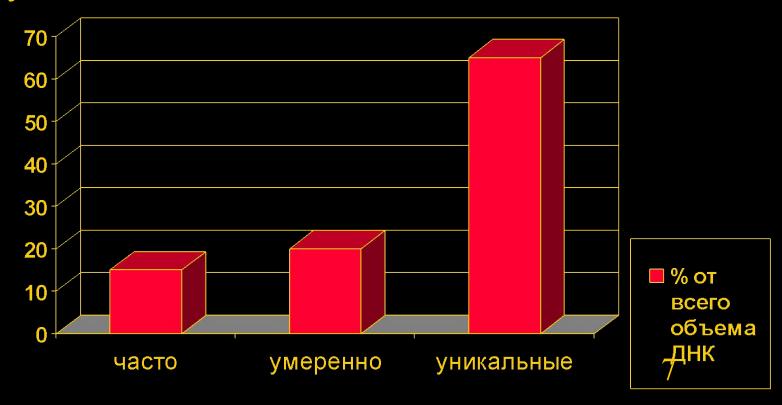
- 1. Участвует в регуляции экспрессии генов
- 2. Принимает участие в процессинге иРНК
- 3. Выполняет структурную функцию (соединение генов)
- 4. Повышает точность гомологичного спаривания и рекомбинативной изменчивости
- 5. Считается носителем принципиально иного генетического кода

Генетический код - универсален для всех живых существ и это одно из его

главных свойств.

Генетический код. Триплетные кодоны тРНК и соответствующие им аминокислоты						
Второе	Первое основание					
основание	U	C	A	G		
	UUU Фенилаланин	UCU Серин	UAU Тирозин	UGU Цистеин		
U	UUC Фенилаланин	UCC Серин	UAC Тирозин	UGC Цистеин		
	UUA Лейцин	UCA Серин	UAA терминация	UGA терминация		
	UUG Лейцин	UCG Серин	UAG терминация	UGG Триптофан		
	CUU Лейцин	СС⊍ Пролин	CAU Гистидин	CGU Аргинин		
C	CUC Лейцин	ССС Пролин	САС Гистидин	CGC Аргинин		
	CUA Лейцин	ССА Пролин	САА Глутамин	CGA Аргинин		
	CUG Лейцин	ССG Пролин	CAG Глутамин	CGG Аргинин		
	AUU Изолейцин	ACU Треонин	AAU Аспарагин	AGU Серин		
A	AUC Изолейцин	АСС Треонин	ААС Аспарагин	AGC Серин		
	AUA Метионин	АСА Треонин	ААА Лизин	AGA Аргинин		
	AUG Метионин	ACG Треонин	AAG Лизин	AGG Аргинин		
	GUU Валин	GCU Аланин	GAU, Аспарагиновая	GGU Глицин		
G	GUC Валин	GCC Аланин	GAC Укислота	GGC Глицин		
	GUA Валин	GCA Аланин	GAA, Глутаминовая	GGA Глицин		
	GUG Валин	GCG Аланин	GAG вислота	GGG Глицин		
Примеч	<i>Примечание:</i> U – урацил; С – цитозин; А – аденин; G – гуанин.					

Универсальность генетического кода обеспечивает возможность считывания в любых клеточных системах искусственно введенной генетической информации, сконструированной из фрагментов ДНК разного видового происхождения.


5

Геномы эукариот состоят из облигатных и факультативных элементов.

Основу облигатных элементов составляют структурные локусы, количество расположение которых в геноме достаточно постоянно. Факультативными элементами являются некоторые виды повторяющихся ДНК, амплифицированных участков, ретровирусных последовательностей, псевдогенов, эписом, ретротранскриптов, ампликонов, дополнительных В-хромосом и различных цитосимбионтов.

Характеристика генома человека Нуклеотидные последовательности подразделяются на 3 группы:

- 1. часто повторяющиеся
- 2. умеренно повторяющиеся
- 3. уникальные

Характеристика генома человека Группы нуклеотидных последовательностей:

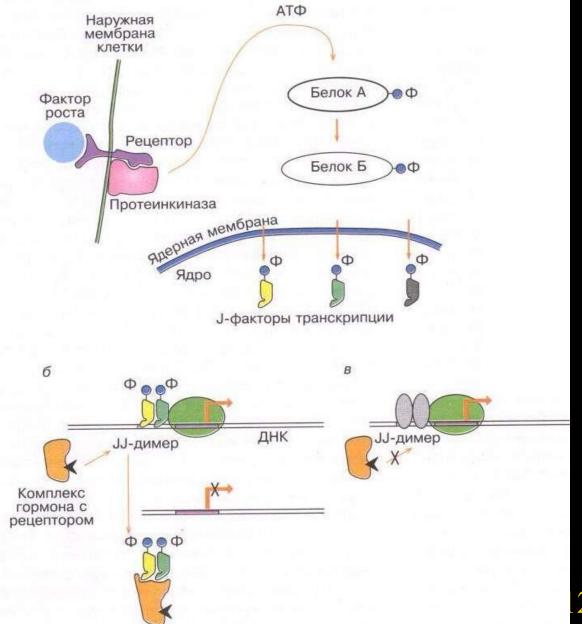
1 группа - часто повторяющиеся

- их количество - 10⁶; они составляют ~15% от всего объема ДНК и представлены последовательностями до 100-200 пар нуклеотидов. Природа и значение их до конца не раскрыты. Предполагается, что это функциональные структуры. Они постоянно реплицируются и передаются из поколения в поколение, но не транскрибируются.

Характеристика генома человека Группы нуклеотидных последовательностей:

2 группа - умеренно повторяющиеся - их количество - 10^{2-3} ; они составляют ~20%от всего объема ДНК и представлены последовательностями до 1000 нуклеотидов. Именно они несут структурные гены, ответственные за синтез белков, принимающих участие в упаковке ДНК (гистонов), транспортной и рибосомальной РНК.

Характеристика генома человека Группы нуклеотидных последовательностей:


3 группа – уникальные

- занимают 40-60% генома человека, встречаются только в одном экземпляре. Это большие последовательности (до нескольких миллионов пар нуклеотидов). К этой группе относятся и структурные гены, ответственные за формирование признаков и свойств организма человека.

Функционирование генома человека

Функционирование генома человека

Единица транскрипции - транскриптон СААТ-бокс ТАТА-бокс (блок Хогнесса) интрон 1 интрон 2 экзон 1 экзон 2 ДНК ген промотор Стартовая точка транскрипции

сайленсеры

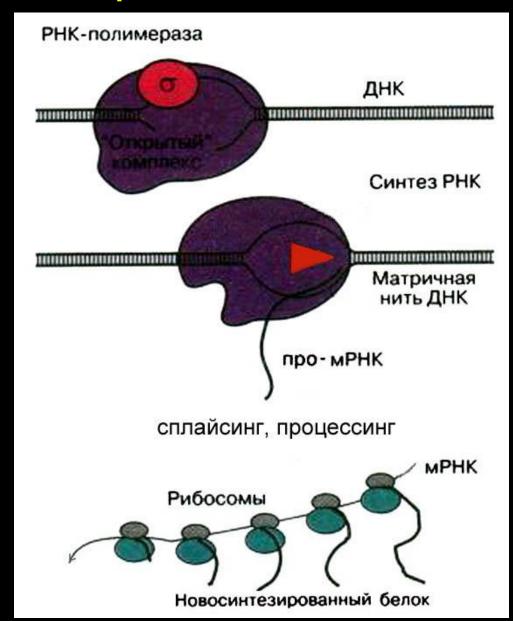
энхансеры

Процессинг, сплайсинг

экзон 1 интрон 1

экзон 2

интрон 2


про-_мРНК N50-200

5' **КЭ**П < присоединение > 3' поли-А э1 (и1) э2 (и2) э3 (и3) э4

выдавливание и удаление интронов э1 э2 э3 э4 э4 э5 э6

зрелая¹⁴ РНК

Функционирование генома человека

Нарушения генома человека

Основные молекулярно-генетические характеристики моногенных болезней, диагностируемых в лаборатории пренатальной диагностики ИАГ РАМН, Санкт-Петербург

Синдромы, номер по Мак-Кьюсику	Хромосомная локализация гена, размеры (тыс. п.о.), экзоны	Встречаемость, белок, размеры в аминокислотах	Типы и количество мутаций, мажорные мутации (в скобках указаны частоты аллелей у больных)
Муковисцидоз, вражденное отсутствие vas de ferens 219700	7q31. 2 CFTR. 500 260 27 экзонов	1:2500 – Европа 1:3800 – Россия СГ-трансмембран- ный регулятор 1480	Точковые-преобладающие; небольшие делеции и дупли-кация; мажорные: de LF508 – 30-90%, W1272X-2-33%, 3732delA – 4%, 394delTT, G542X, R117H
Миопатия Дюшенна, Беккера, кардиомиопатия делеционная 310200	Хр21, 2 DMD, 21 2000 73 экзона	1:3500 мальчиков Дистрофин 3685	Делеции протяженные – 60%; дупликации – 6-7%; делеции нескольких нуклеотидов – 7; нонсенс – 9; сплайсинг – 3; миссенс – 1; инсерция – 1
Гемофилия А, фактора VIII дефицит 306700	Xq28 F8C. 66 186 26 экзонов	1:6500 мальчиков Фактор VIII свертываемости 2351	Делеции экзонов – 31; мис- сенс – 21; нонсенс – 8; мажор- ные: инверсия 26 – 25 экзонов – 45% семей
Гемофилия В, Кристма- са, фактора IX дефицит 306900	Хq27. 1-q27.2 F9. 400 34 8 экзонов	1:20000 мальчиков Фактор IX сверты- ваемости крови 461	Миссенс и нонсенс более 60%; спайсинг – 10%; регулят. – 3,5%; делеции – до 40% при тяжелых формах
Фон Виллебранда бо- лезнь 193400	12pter-p12 F8VWF. 22 178 52 экзона	1:5 – 20000 Фактор V111R свер- тываемости крови	Тип I и II – миссенс; мажорные: R543W, R545C, V553M, R578Q. Тип III – деляция 1 нуклеотида в 28 экзоне; нонсенс – 4
Фенилкетонурия; гиперфенилаланинемия, мягкая 261600	12q24. 1 РАН. 70 90 13 экзонов	1:10 – 15000 Фенилаланингидро- ксилаза 452	Миссенс – 62%; нонсенс – 13%; спайсинг – 13%; делеций – 9%; мажорные: IVS12+1, R408W, R261Q, R158Q, IVS10
Леш-Нихана синдром; НРRТ-родств. подагра 308000	Хq26-q27. 2 HPRT. 100 44 9 экзонов	Гипоксантинфос- форибозилтранс- фераза 217	Миссенс – 53%; небольшие структурные перестройки – 40%; спайсинг – 5%; нонсенс – 2%; мажорные: R170TER (15%)
Гепатолентикулярная дегенерация Вильсона— Коновалова 277900	13q14. 3-q21. 1 ATP7B. 34	Медь- транспортирующая АТФаза Р тип 1434	Миссенс-15; деле- ции/инсерция-14; мажорные- H714Q-31% в Америке, 22% в России; 1 нуклеотид делеции H1070G1-28%; GI1267L-10%