Metal-metal multiple bonded intermediates in catalysis

(for example, Rh₂ and Ru₂ complexes)

Overview of Rh₂-catalysed C–H functionalization and C–H anination chemistries

Carbenoid C-H functionalization $N_2 = C R + C - H R + N_2$ R = Ar, H $A = COOCH_3$ Nitrenoid C-H amination $A - NH_2 + Phl(OAc)_2 + C - H R Rh_2$ $A = SO_3R, COOR$

Rh₂ carbene chemistry

The key electronic feature of this intermediate is delocalized Rh–Rh–C three-centre bonding with appropriate three-centre orbitals of σ and π symmetry

Carbenoid C-H functionalization
$$N_2 = C + C - H$$

$$R = Ar, H$$

$$A = COOCH_3$$

$$[Rh_2]$$

$$C - C - R + N_2$$

Trends in reactivity for the different classes of organic diazo compounds

Preparation of the first Rh₂ D/A carbene complex

Rh₂ nitrene chemistry

Rh₂-catalysed nitrenoid chemistry is mechanistically more complex than the corresponding carbenoid chemistry

Nitrenoid C-H amination
$$A-NH_2 + PhI(OAc)_2 + C-H \xrightarrow{[Rh_2]} C-N \xrightarrow{H} + 2 HOAc + PhI$$

$$A = SO_3R, COOR$$

Reactions using pre-formed iminoiodinane compounds

(a)
$$Phl = N = 0$$

- (a) intramolecular cyclization
- (b) intermolecular reaction

Proposed mechanism for intermolecular C–H amination

Organic groups on the catalyst are removed for clarity

Ru₂ nitrido chemistry

Rh-Rh=E
$$\square$$
 M-M=E \square Ru-Ru=N structures structures (E = CR_2/NR)

The first Ru₂ nitrido compound

-Ru₂(DPhF)₄N

(DPhF = N,N'-diphenylformamidinate) – was found to be thermally unstable

In an effort to understand the nature of this instability, the related Ru₂(D(3,5-Cl₂)PhF)₄N₃ azide complex was investigated

Crystal Structure Of

 $Ru_{2}[(D(3,5-Cl_{2})PhF)_{3}(D(3,5-Cl_{2}-2-N_{2})PhF)_{3}]$

Synthetic cycle for N-atom transfer using the Ru₂(chp)₄ core

Summary

Efforts to identify reactive metal-metal bonded complexes having a linear M-M=E structure have led to the observation of important intermediates in Rh₂-catalysed carbenoid and nitrenoid transformations. Inspired by the structures of these intermediates, chemists have been able to explore novel reactivity of the Ru-Ru≡N core including intramolecular C-H amination as well as intermolecular N atom transfer.

Source

J. Chem. Sci. Vol. 127, No. 2, February 2015, pp. 209–214. Indian Academy of Sciences. DOI 10.1007/s12039-015-0773-6

JOHN F BERRY

Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, WI 53706, USA

e-mail: berry@chem.wisc.edu

MS received 19 May 2014; accepted 17 July 2014

The presentation was prepared by Maxim Pavchenko