Metal–metal multiple bonded intermediates in catalysis

(for example, Rh_2 and Ru_2 complexes)

Overview of Rh₂-catalysed C–H functionalization and C–H anination chemistries

Rh₂ carbene chemistry

The key electronic feature of this intermediate is delocalized Rh–Rh–C three-centre bonding with appropriate three-centre orbitals of σ and π symmetry

Trends in reactivity for the different classes of organic diazo compounds

Increased selectivity for C-H functionalization

Preparation of the first Rh₂ D/A carbene complex

Rh₂ nitrene chemistry

Rh₂-catalysed nitrenoid chemistry is mechanistically more complex than the corresponding carbenoid chemistry

Reactions using pre-formed iminoiodinane compounds

(a) – intramolecular cyclization(b) – intermolecular reaction

Proposed mechanism for intermolecular C–H amination

Organic groups on the catalyst are removed for clarity

Ru₂ nitrido chemistry $Rh-Rh=E \square M-M=E \square Ru-Ru=N$ structures structures structure $(E = CR_2/NR)$ The first Ru₂ nitrido compound $-Ru_2(DPhF)_AN$ (DPhF = N,N'-diphenylformamidinate) – was found to be thermally unstable In an effort to understand the nature of this instability, the related Ru₂(D(3,5-Cl₂)PhF)₄N₃ azide complex was investigated

$Ru_{2}[(D(3,5-Cl_{2})PhF)_{3}(D(3,5-Cl_{2}-2-N)H)PhF)]$

Synthetic cycle for N-atom transfer using the Ru₂(chp)₄ core

Summary

Efforts to identify reactive metal-metal bonded complexes having a linear M–M=E structure have led to the observation of important intermediates in Rh₂-catalysed carbenoid and nitrenoid transformations. Inspired by the structures of these intermediates, chemists have been able to explore novel reactivity of the Ru–Ru≡N core including intramolecular C-H amination as well as intermolecular N atom transfer.

Source

J. Chem. Sci. Vol. 127, No. 2, February 2015, pp. 209–214. Indian Academy of Sciences. DOI 10.1007/s12039-015-0773-6

JOHN F BERRY

Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, WI 53706, USA

e-mail: berry@chem.wisc.edu

MS received 19 May 2014; accepted 17 July 2014

The presentation was prepared by Maxim Pavchenko