
Module 3:
Program flow and
Data collections

D. Petin

07/2014

Agenda

▪Program flow control

 - conditions

 - loops

 - switch statement

▪Collections

 - array

 - hash table

[1]

[2]

Program Flow Control

Program flow

Operators in a program processed in linear order: from
top to bottom and from left to right.

Such sequence is called Program flow.

There are several methods intended to change
standard flow. You already know about function. Also
JavaScript has conditions, loops and switch statement.

[1]

[2]

Conditions: if-else

Most of algorithms have situation when next step related of
some conditions depended on previous steps. It's a reason to
use if-else statement.

if (condition) {
 true branch;
} else {
 false branch;
}

if (condition) {
 true branch;
}

[1]

[2] [3]

Conditions: if-else

Example:

function discount (type) {
 if (type === “silver”) {
 price *= 0.9;
 }
 if (type === “gold”) {
 price *= 0.85;
 }
 return price;
}

Function get a parameter
with a information about
discount. And if discount is
"silver" or "gold“, function
modifies global variable
price.

In this example a
shortened form of
operator was used.

Conditions: ?:

Sometimes if-else too bulky. If we need to initialize a
variable modifying it by simple conditions; or we need
to return a value from function and this value is
dependent on something, we can use ternary

Ternary operator like ?:.

result = (condition)? true action: false action;

Let’s rewrite the last example using ternary operator.

[1]

Conditions: ?:

function discount (type) {
 if (type === “silver”) {
 price *= 0.9;
 }
 if (type === “gold”) {
 price *= 0.85;
 }
 return price;
}

function discount (type) {
 price *= (type === “silver”)? 0.9: 1;
 price *= (type === “gold”)? 0.85: 1;

 return price;
}

We get a more compact
but a less readable code.
So be careful!

Loops: for

Loops are used when algorithm requires repeating of
statements.

First of them: for - loop with counter

for (start position; repeat condition; step) {
 body of loop; // will be repeated
}

One processing of loop’s body is called iteration.

[1]

[2]

[3]

Loops: while and do-while

Two others types of loops: while and do-while

while (condition) {
 body of loop;
}

do {
 body of loop;
} while (condition);

The main difference between these loops is the moment of
condition calculation. While calculates condition, and if the
result is true, while does iteration. Do-while initially does
iteration and after that calculates a condition.

[1]

[2]

Loops: examples

Example 1: for (var i = 0; i < 5; i++) {
 console.log(“Iteration # %d”, i + 1);
}

Text with number
of current iteration
will be print 5
times

Example 2:

while (accumulation < 100) {
 accumulation += doSomething();
}

This loop will be
repeated until
accumulation
reaches 100 or
gets grater value.

[1]

[2]

Which type of loop to use?

It may be not so simple to decide which type of loops to use
in some specific conditions.

There is a simple rule for loop selection: if we know exact
counts of iterations, we use for, if we know only exiting
condition we use while or do-while.

While loop we use in most cases when we need to check for
condition for each iteration, but sometimes we know that at
least one iteration should be executed, so we us do-while in
such case.

Loops: break and continue

There are two keywords for loops control :

▪break – aborts loop and moves control to next
statement after the loop;

▪continue – aborts current iteration and immediately
starts next iteration.

Try not to use this keywords. A good loop have one
entering point, one condition and one exit.

Switch

Switch statement allows to select one of many blocks of code
to be executed. If all options don’t fit, default statements will
be processed

switch (statement) {
 case value1: some body;
 break;
 case value2: some body;
 break;
 . . .
 default: some body;
}

Switch

Example:

This switch looks
for the word
equivalent for a
mark in the
5-point system

Default statement
is not used.

switch (mark) {
 case 5: result = “excellent”;
 break;
 case 4: result = “good”;
 break;
 case 3: result = “satisfactorily”;
 break;
 case 2: result = “bad”;
 break;
}

Collections

Collections

Collection is a set of variables grouped under common
name.

Usually elements of collections are grouped according to
some logical or physical characteristic.

Collections help to avoids situations when we have to
declare multiple variables with similar names::

 var a1, a2, a3, a4…

There are two types of collections that are typical for JS:
arrays and hash tables.

Arrays

Array: creation

There are two ways to create an array:

var name = []; // preferrable
 and
var name = new Array()

First way (with using indexer []) is modern and
strongly recommended for use.
Second way (with new and Array constructor) is
deprecated and not recommended.

[1]

[2]

Array: processing

Usage of arrays:
 var array = [] // declaration of empty array
 var array = [5, 8, 16] // declaration of predefined array

 array[0] = 4; // writing value with index 0
 tmp = array[2]; // reading value by index (in tmp - 16)

 array.length // getting length of array

Array: processing

In the sample below we output all elements of the array
to the console:

var array = [4, 8, 16, 32], i;
for (i = 0; i < array.length; i++) {

 console.log(array[i]);
}

Note: this works only for numerical indexes.

[1]

Array: features

Arrays in JavaScript differ from arrays in classical
languages.

Arrays in JS are instances of Object.

So Array in JS can be easily resized, can contain data of
different types and have string as an index.

And more: if we create empty array it is real empty. And if
we insert element with index 5 into this empty array, we
get array with only one element but with length equal to
6!

Array: length calculation

Let's discuss length calculation.
It’s a virtual property.

Arrays don't review own elements. It takes biggest index,
increments it and returns it.

So, if we insert element into an empty array with index 6,
property length will take false value – 7!

Avoid such errors to help special methods to insert and
delete elements in the array. They correctly handle
indexes and do not allow free spaces between them.

Array: useful methods

Some useful methods of array:
 array.push(value) – add element to the end of an array
 array.pop() – extract element from end of an array

 array.unshift(value) – insert element before first
 array.shift() – extract first element

 array.join() – concatenate all elements into a string
 array.split() – split a string into an array of substrings

 array.sort() – built-in method to sort array

Array: forEach

Not so long ago array received very comfortable method
forEach. This method circulates around array elements
and executes your callback function for each of them.

var array = [4, 8, 16, 32];
array.forEach(function (element, i) {

 console.log(element);
});

Hash Table

Hash Table: creation

Sometimes we need an Array with string indexes (keys).
There is a special data structure for such case: hash table.

var name = { };

Hash table is an usual JavaScript object without
methods.
To access elements use array syntax with string index
instead of numerical index.

Hash Table: creation

We can create hash and initialize it at the same time. For this
we should write values separated by a comma like in array.
But for all values we have to set key:

var name = {
 key: value,
 key: value
};

This format of describing of JS object has its own name:
JavaScript Object Notation or short JSON.

[1]

[2]

Hash Table: usage

Usage of hash tables is very similar to arrays:
hash[“good”] = 4; // writing value in element with key “good”
tmp = hash[“excellent”]; // reading value by key “excellent”

The difference is in usage of for-in statement:

for (key in hash) {

 console.log(hash[key]);
}

[1]

Array vs Hash

Use Array for collections with digital indexes.
Use Hash if you want use string keys.

Don't look for property length in Hash.
Don't look for forEach and other Array methods in Hash.

Always explicitly declare Array otherwise you get a Hash.
Don't use for with hash, use for-in instead.

At finally : use collection – be cool :)

