
Module 4:
OOP in JavaScript

D. Petin

06/2014

Agenda

▪Custom objects

▪Constructors
▪Context and "this"

▪Operator "new"

Custom Object

Object creation

You know that we can create a simple object in
JavaScript. We use JSON for this.

var cat = {
 name: “Znizhok”,
 color: “white”
};

[1]

Object or Hash Table

But this way it looks like hash table creation. What is the
difference between hash table and object, then?

 var hash = {
 key: value,
 key: value
};

var object = {
 key: value,
 key: value
};

[1]

Object or Hash Table

Typically we use hash table if we want to represent some
collection, and we use an object to describe some system
or entity.

 var cats = {
 first: murzyk,
 second: barsyk
};

var cat = {
 name: barsik,
 color: white
};

[1]

Difference in use

There are some differences in using of hash tables and
objects as a result. For example:

cats["first"]; // good way

cat["name"]; // incorrect!

cat.name; // good way

To access elements of hash table we use indexer [] with key
inside. But it's incorrect for objects! For objects Operator "."
should be used :

[1]

[2]

Constructors

Constructors

Sometimes we need to create more than one single object.
It is not a good idea to use the literal way for this. It will be
better create a scenario for objects reproducing.

Constructor is a function that implements this scenario
in JavaScript.

Constructor consists of declaration attributes and
methods that should be added into each new object
with presented structure.

Constructors: example

function Cat (name) {

 this.name = name;

 this.run = function () {

 console.log(this.name + " run!");
 };
 return this;
}

var murzyk = new Cat("Murzyk");

[1]

[2]

Context and "this"

Context

Let's imagine two identical objects.

They are created by Cat constructor:

var murzyk = new Cat("Murzyk"),

 barsyk = new Cat("Barsyk");
[1]

Context

If we call method run() for both cats, we’ll take
correct results:

murzyk.run();

barzyk.run();

In console:

Murzyk run!

In console:

Barsyk run!

How does the interpreter distinguish whose
name should be printed?

[1]

Context

It works because we use the next form of access to
attribute name: this.name.

this contains inside a reference to object on whose
behalf was called method run.

Such a reference is called a context.

The context determined automatically after the method
calling and can't be changed by code.

Loss of context

Be careful! There are situations when you can
lose a context. For example:

setTimeout(murzyk.run, delay);
In console:

undefined run!

murzyk.run is a reference to method. And only reference
was saved in setTimeout. When the method was called by
saved reference, object window will be used as a context
and this.name (equal to window.name) was not found.

[1]

Operator new

Pre-example

Imagine that some abstract factory produces
cars. All cars are absolutely identical:

[1]

Pre-example

But there are some emergency services and
each of them has an own color scheme for a
car:

[1]

New: scenario of work

new processing has a similar scenario:

 creation of default object

 calling of constructor with just created
object context

 modification of default object

 returning and saving the reference to
modified object

[1]

[2]

[3]

[4]

[5]

New: example

 creation of default object

var murzyk = new Cat("Murzyk");

var _temporary_ref = new Object();

Interpreter creates some variables for temporary storing
of reference to new object. Now it's a default object.

[1]

[2]

[3]

New: example

calling of constructor with just
created object context

var murzyk = new Cat("Murzyk");

_temporary_ref.Cat();

_temporary_ref set as a context for constructor Cat.

this inside the Cat refers to as yet default object.

[1]

[2]

[3]

New: example

 modification of default object

var murzyk = new Cat("Murzyk");

this.name = "Murzyk";
this.run = function () { . . . };

 Interpreter extends the default object inside the
constructor. If a key is not found, it will be

created, as it occurs with hashes and arrays.

[1]

[2]

[3]

New: example

returning and saving the
reference to modified object

var murzyk = new Cat(“Murzyk”);

var murzik = _temporary_ref;

 At last the reference to modified object
returned and saved in a user variable.

[1]

[2]

[3]

