- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

Non-inertial Frames of Reference

The frame is called *non-inertial* one if it moves with acceleration relative to an inertial frame of reference.

Observer is in the Inertial Frame of Reference

2 forces: the of gravity, $mg\,,\,$ and the tension of a thread, $T\,$.

The motion is described by the fundamental law of motion,

$$\mathbf{T} + m\mathbf{g} = \mathbf{F} = m\mathbf{a}_{rel.}$$

Observer is in the Non-Inertial Frame of Reference

The ball is in state of rest!

Newton's law of motion seems to be *not* correct now!?

- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

Observer is in the Non-Inertial Frame of Reference (cont.)

$$\mathbf{T} + m\mathbf{g} + \mathbf{F}_{in.} = \mathbf{0}$$

The force \mathbf{F}_{in} we call the force of inertia. But where does this force come from?

Frame Moves with Acceleration

In non-inertial system of reference an additional force - force of inertia - appears. Its magnitude is proportional to the acceleration of the moving frame of reference with respect to the inertial frame.

Forces of Inertia

- Forces of inertia exist in non-inertial frames of reference only, never forget it.

- As the forces of inertia are not the result of interaction of objects, the 3rd Newton's law is not applicable to them.

- The magnitude of the force of inertia is proportional to the mass of the object.

- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

Principle of equivalence of force of gravity and force of inertia

The principle of equivalence of gravitational and inertial mass lies at the heart of Einstein's general theory of relativity.

- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

Forces of Inertia in Rotating Frame of Reference

In *K'* frame the motion of the ball is uniform circular motion with v' = const. In *K* frame the motion of the ball is uniform circular motion, its velocity is $v = v' + \omega R$.

The centripetal acceleration of the ball in K is

$$\mathbf{a}_{cp} = \frac{v^2}{R}\mathbf{n} = \frac{(v' + \omega R)^2}{R}\mathbf{n} = \frac{(v')^2}{R}\mathbf{n} + \omega^2 R\mathbf{n} + 2v'\omega\mathbf{n}$$

Multiplying by mass of the ball,

$$m\mathbf{a}_{cp} = m\mathbf{a}'_{cp} + m\omega^2 R\mathbf{n} + 2mv'\omega\mathbf{n}$$

Centrifugal and Coriolis Forces

$$m\mathbf{a}_{cp}' = \mathbf{F} - m\omega^2 R\mathbf{n} - 2mv'\omega\mathbf{n}$$

centrifugal force
$$\mathbf{F}_{cf} = m\omega^2 \mathbf{R}$$
 $\mathbf{F}_{cf} = m[\boldsymbol{\omega}[\boldsymbol{\omega},\mathbf{R}]]$

force of Coriolis $\mathbf{F}_{cor} = 2m[\mathbf{v}', \boldsymbol{\omega}]$

- Non-Inertial Frames of Reference
- Forces of Inertia
- Principle of Equivalence of Force of Gravity and Force of Inertia
- Forces of Inertia in Rotating Frame of Reference
- Centrifugal Force
- Coriolis Force

Centrifugal Force

$$m\mathbf{g} = \mathbf{F}_{gr} + \mathbf{F}_{cf}$$

The centrifugal force of inertia causes difference in accelation due to gravity in different latitudes.

Coriolis Force

The rivers in the northern hemisphere destroy their right banks.

A trajectory of a free falling body deviates to the east.