HH'U Nizhni Novgorod State University

Scale of notation, or number system notation
V.A.Grishagin

Faculty of Computing Math and Cybernetics
Software Department

Nizhni Novgorod, Russia 2007

Positional, or radix notation

So, in decimal positional system we use 10 Arabic digits and write the number using powers of the number 10 which is called "radix" of the system.

Models and Methods of

General positional scheme

Theorem. For any integer $\mathbf{p >}=\mathbf{2}$, any positive integer number \mathbf{N} may be represented in the form

$$
\begin{equation*}
N=\boldsymbol{\beta}_{\mathrm{k}} \mathrm{p}^{\mathrm{k}}+\boldsymbol{\beta}_{\mathrm{k}-1} \mathrm{p}^{\mathrm{k}-1}+\ldots+\boldsymbol{\beta}_{2} \mathrm{p}^{2}+\boldsymbol{\beta}_{1} \mathrm{p}^{1}+\boldsymbol{\beta}_{0} \mathrm{p}^{0} \tag{1}
\end{equation*}
$$

where coefficients $\boldsymbol{\beta}_{\mathrm{i}}$ are integer and satisfy the inequalities $\mathbf{0}<\boldsymbol{=} \boldsymbol{\beta}_{\mathrm{i}}<\boldsymbol{=} \mathbf{p - 1}$
Let's reduce the notation (1) and write the number \mathbf{N} as the sequence of coefficients $\boldsymbol{\beta}_{\mathbf{i}}$:

$$
\begin{equation*}
N=\beta_{k} \beta_{k-1}: \cdot \beta_{2} \beta_{1} \beta_{0} \tag{2}
\end{equation*}
$$

The reduced form (2) is called positional representation of the number \mathbf{N} in the number system notation with radix \mathbf{p}.

Models and Methods of
NNSU, 2006
Programming

General positional scheme

If $p<=10$ all the coefficients $\boldsymbol{\beta}_{\mathrm{i}}$ not greater than 9 and it is possible to use decimal digits from 0 to $p-1$ as digits in the p-radix system.

In this case we have got a simple rule to transform a number written in p-radix system to decimal one. We should just rewrite the number using the form (1) and calculate this expression.

Example.
Transform the number 423_{5} to the decimal system.
$423_{5}=4 * 5^{2}+2 * 5^{1}+3 * 5^{0}=100+10+3=113_{10}$

Overdecimal systems

However, if $p>10$ we may get an ambiguity in the notation (2).
Let's consider $\mathrm{p}=16$ (hexadecimal system) and take the number 30 . We can write this number as

$$
30=16+14=1^{*} 16^{1}+14^{*} 16^{0}
$$

and with accordance of the rule (1) $30=114_{16}$. Let's fulfill the reverse transformation: from hexadecimal system to decimal.

$$
114_{16}=1^{*} 16^{2}+1^{*} 16^{1}+4^{*} 16^{0}=276!!!
$$

Where is the contradiction?
Only one digit may be placed in one position but we tried to put to the left position the number 14 of two digits. As a result the digit 1 which must be at the second position (on the left) has arisen at the third one and as a consequence have changed its value!

Overdecimal systems

How to overcome this contradiction?
The decision is very simple. Let's add new signs to our decimal numerals so that signs will denote numbers 10, 11, 12 and so on. As these signs the uppercase Roman letters are used, i.e.
$A=10, B=11, C=12, D=13, E=14, F=15$. As in the informatics hexadecimal system is the greatest one it is not necessary to continue.

So, the number $30_{10}=1 \mathrm{E}_{16}$

Example.

$$
123_{12}=?_{10} \quad A A A_{16}=?_{10}
$$

Models and Methods of

Remainder method

The method of transforming a decimal number to another system with radix being different from 10 can be derived from the expression (1): it is sufficient to find coefficients of powers. However, there is a simple method for sequential computation these coefficients.

Example. $113_{10}=?_{5}$

Models and Methods of
NNSU, 2006 Programming

Thank you for attention

- Questions,
- Remarks,
. Comments

Models and Methods of

