A Drill Pipe Management Program

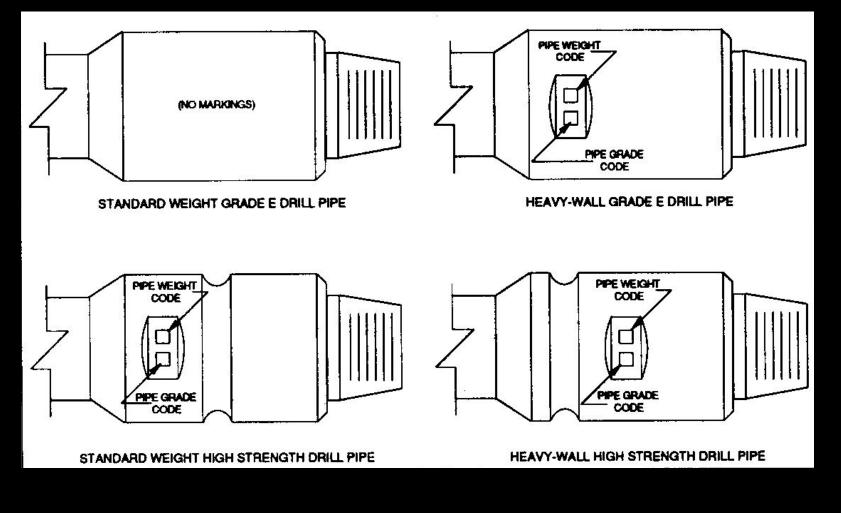
Technology is the Key to the Future

Why Do You Need A Drill Pipe Management Program?

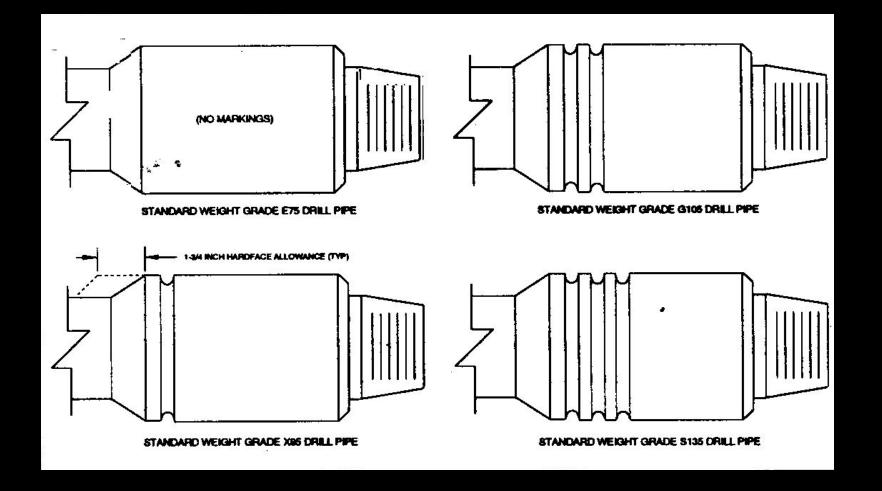
Drill Pipe Is Your Single Largest Investment <u>TAKE CARE OF IT</u>

- Increase The Return On Your Investment
- Reduce Costly Failures
- Conserve Capital
- Enhance Your Company Image With Your Customers

Drill Pipe Care and Handing Offshore

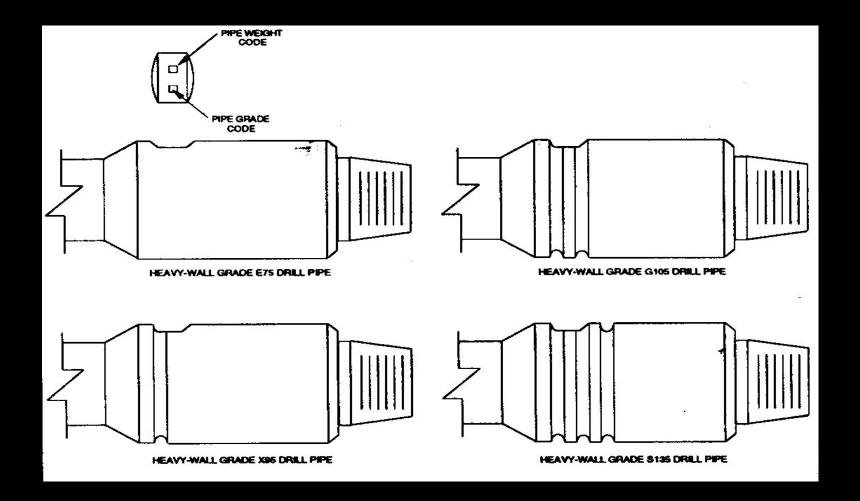


Drill Pipe Tool Joint Identification



Old API Marking System For Drill Pipe

New API Marking System For Standard Wall Drill Pipe

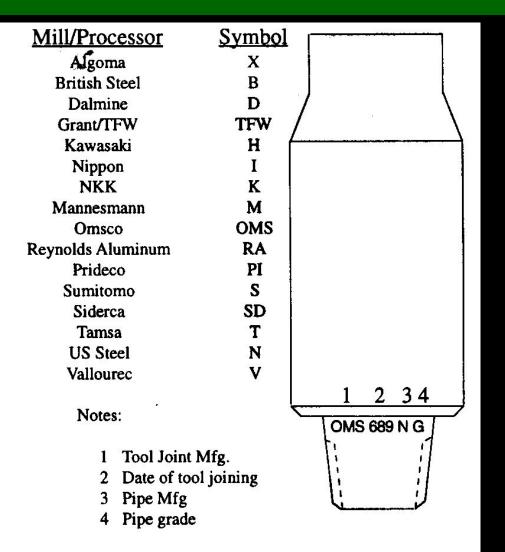


Drill Pipe Tool Joints

Tool Joint	Grade	Tool Joint O.D.	Tool Joint I.D.		
5" NC-50 19.50#	E-75	6 5/8"	3 ³ /4"	Refer to API RP7G Tables 8-9 for Mechanical Properties of New Tool Joints and Drill Pipe	
	X-95	6 5/8"	3 ¹ / ₂ "		
	G-105	6 5//8"	3 1/4"	The number in the drill pipe grade is the tensile yield strength of that grade. Example: Grade S-135 is 135,000 psi	
	S-135	6 5/8"	2 ³ /4"	minimum yield strength.	
51/2" FH	E-75	7"	4"	The weight is pounds per foot weight of the drill pipe. Example: 19.50# is 19.50 pounds per foot.	
24.70#	X-95	7 ¼"	3 ¹ / ₂ "		
	G-105	7 ¼"	3 1/2"		
	S-135	7 1/2"	3"		
5 7/8" XT-57					
				Tuboscope	
23.40#	S-135	7"	4 ¹ / ₄ "	A Varco Company	

New API Marking System For Heavy Wall Drill Pipe

Tool Joint Identification Of Heavy Wall Drill Pipe


Weight and Grade Codes

Grade	Grade Code
E – 75	E
X – 95	X
G – 105	G
S – 135	S

OD (in)	Nominal Weight (lb/ft)	Weight Code
2 3/8	4.85	1
	6.65 (standard)	2
2 7/8	6.85	1
	10.40 (standard)	2
3 1/2	9.50	1
	13.30 (standard)	2
	15.50	3
4	11.85	1
	14.00 (standard)	2
	15.70	3
4 1/2	13.75	1
	16.60 (standard)	2
	20.00	3
	22.82	4

API Pin Neck Marking System

Example: Omsco tool joint joined June, 1989 on US Steel grade G pipe.

Tool Joint Pin Neck Marking

Tool Joint Makeup and Breakout Procedures New and Re-cut Connections

- Check torque gauge and make sure it is working properly
 - Don't guess!
- Clean and dry each connection.
- Dope threads <u>and</u> sealing shoulders with a good quality, clean, tool joint thread compound.
- Stab connection and make up s-l-o-w-l-y.
- Connection makeup is typically to 80% of the manufacturers torque.
 - Don't guess, look it up!
- Breakout and spin out s-l-o-w-l-y.
- Wipe off connections and inspect threads and shoulders for damage.
- Re-dope threads <u>and</u> sealing shoulders.
- Stab connection and make up s-l-o-w-l-y.
- Connection makeup is typically to 90% of the manufacturers torque.
 - Don't guess, look it up!

Recommended Thread Protectors

Be Consistent

Leave Thread Protectors on when Picking Up or Laying Down

Remove Box Thread Protector and Insert Rabbit

Be Sure of that Tool Joint Compound

Keep Contaminants Out Of Tool Joint Compound

This is <u>Not</u> Tool Joint Compound It is Grease for Slips

Pipe Handler Lifts and Positions Joint

Remove Pin End Protector

Use a Neoprene Rabbit <u>Not</u> Steel

Wipe Old Tool Joint Compound

Inspect Threads and Sealing Shoulder

Improper Application of Tool Joint Compound

Proper Application of Tool Joint Compound

This is What You <u>Don't</u> Want Dry Connection

Clean Drill Pipe ID

Internal Corrosion Pitting

Clean Drill Pipe OD with a Wiper

External Corrosion Pitting

Proper Racking of Drill Pipe in Stands

Must Use Protectors While in Stands

Proper Stabbing is Critical

Improper Stabbing

This Is What You <u>DON'T</u> Want

Stabbing Guide

Improper Slip Installation

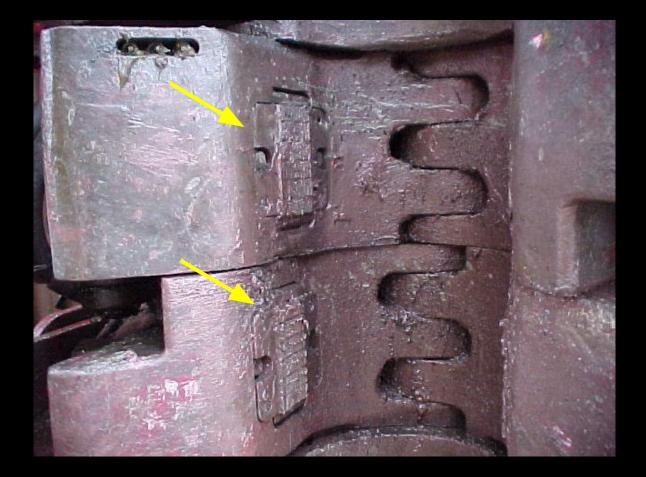
Cleaning Slips

Slip Maintenance

Slip Area Damage

Slip Cuts

Crack in Slip Cuts

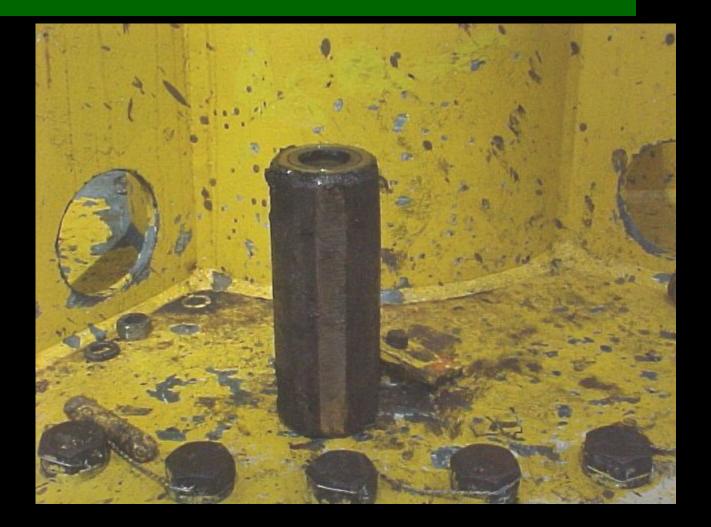


Use a Spinner for Initial Make-up

Tong Die Maintenance

Proper Position Iron Roughneck

Pipe Handling System - Roller Maintenance

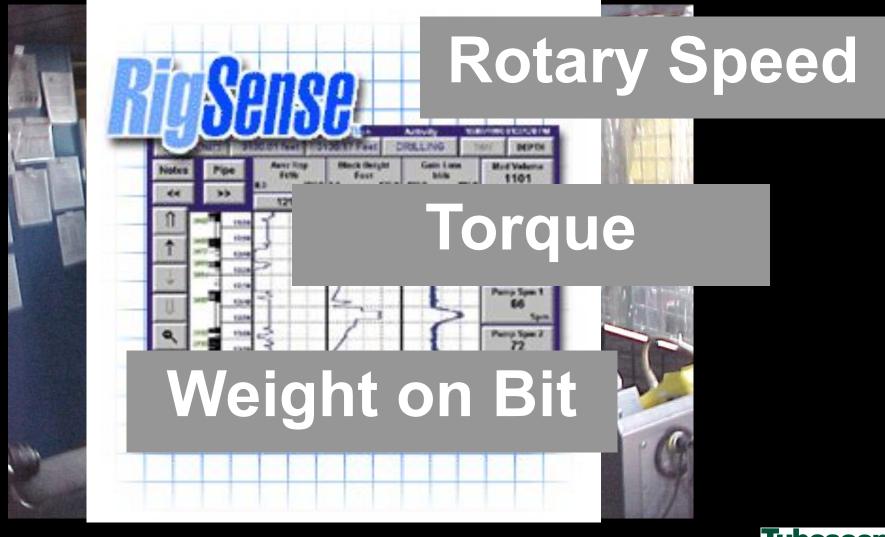


Pipe Handling System - **Die Maintenance**

Pipe Handling System - Worn Roller

Pipe Conveyor System - Maintain Conveyor

Maintain Pipe Handling Equipment



Inspect Hooks Periodically

Monitor Your Drilling Controls

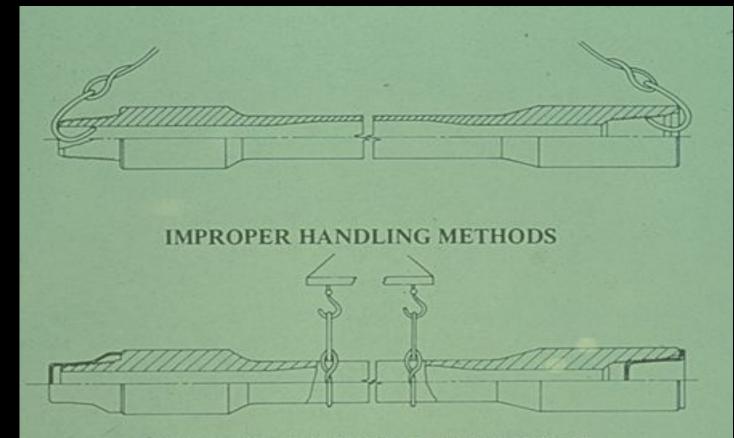
An Effect of Over Torque

Proper Storage of Drill Pipe

Improper Storage of Drill Pipe

Proper Storage of Subs

Lifting Drill Pipe With Slings



Use Spreader Bar With Slings

Handle Drill Pipe With Slings <u>NEVER</u> Use Hooks Or Rods

RECOMMENDED HANDLING METHODS WITH THREAD PROTECTORS IN PLACE

Tool Joint OD Wear

Down Grade New Difference 24.70 # 5 ¹/₂ S 7 1/32 7¹/₂ 15/32 7 23.40 # 57/8 S 6 15/32 17/32 25.20 # 6 5/8 S **8** ¹/₂ 7 29/32 19/32

Check Your Hardband Condition

Used Drill Pipe Hardband Condition Report

Date: Tuboscop	pe Inspector
Rig No.:	
Rig Location:O	il Company:
Description Of Drill Pipe:	
Size: <u>5</u> Grade: <u>X-95</u> Weight: <u>19.50</u>	Connection: <u>NC 50</u>
Hardband Condition: Drill Pipe	
No. of joints requiring hardbanding: A	verage box tool joint OD:
No. of joints requiring tool joint rebuild:	
Caliper Settings For Hardbanding	
3 1/2", 13.30 & 15.50#, NC-38 connections - 4 13/	16" **
E-75, 13.30# - 4 9/16" **	
4 1/2", 16.60 & 20.00#, NC-46 connections - 6 1/1	6" ** – ALL
5", 19.50 & 25.60#, NC-50 connections - 6 7/16"	** – ALL
** Caliper settings were based on new tool joint	t OD less 3/16". Field hardband units typically deposit 1/8" to 3/16" of
	nt Exceeding new tool joint OD can result in fishing problems and eleva
damage.	
Tong Space Minimums:	
Box Tool Joint – 9-1/2" (includes 3" hardband a	
	yes, how many and what size
No. of joints with short boxes:	
No. of joints with short pins:	HWDP require Hard banding – Yes No
Average box tool joint tong space:	
Average pin tool joint tong space:	

Check Condition Shoulders And Bevels

Drill Pipe Hardband TCS 8000 – Box End

Chrome Alloy Hardband

- No Cracking
- No Spalling
- Casing Friendly
- Can Be Reapplied
- Hardness 50 54 HRC

Check Straightness Of Drill Pipe

NEVER Use Steel Rods Or Hooks To Move Drill Pipe

Inspect Condition Of Internal Coating

How To Minimize Corrosion In The Drill Stem

- Control the drilling fluid pH. A pH of 9.5 or higher will deter the corrosion of steel in water-base systems containing dissolved O₂
- Use proper inhibitors/oxygen scavengers particularly with low pH, low solids drilling fluids.
- Use plastic coated pipe and a proven re-coating program.
- Use de-gassers/de-sanders to remove dissolved gases and abrasives.
- Maintain tight pump connections and reduce oxygen intake.
- Minimize stress concentrators such as slip/tong marks, gouges, notches, etc.

How To Minimize Sulfide Stress Cracking In The Drill Stem

- When practical, maintain a pH of 10 or higher.
- Chemically treat before encountering H₂S.
- Use the lowest grade drill pipe that will withstand the required drilling conditions.
- Reduce stresses by using thicker walled components.
- Minimize stress concentrators.
- After H₂S exposure, use care in pipe handling. Avoid sudden shocks and high loads.
- Use oil-based mud to create an oil-wet metal. Agents that cause corrosion in water (dissolved salts, dissolved gases, and acids) do not damage oil-wet metal.

API/IADC Drill Pipe Failure Study

NUMBER OF REPORTING OIL COMPANIES 4

NUMBER OF DRILLING RIGS INVOLVED 200 (ESTIMATED)

FAILURES DIVIDED - PIN/BOX

65% BOX - 35% PIN

40% ID

I.D. Fatigue Cracks Upset Run-Out Zone

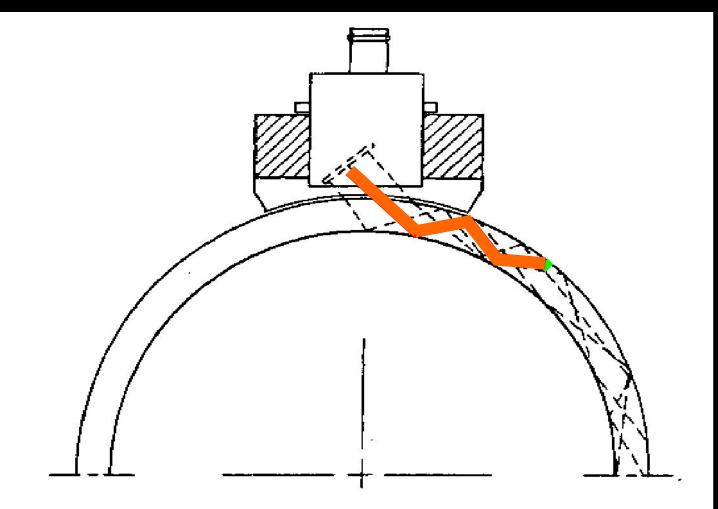
Washout - Box


Washout - Pin

Electromagnetic Inspection

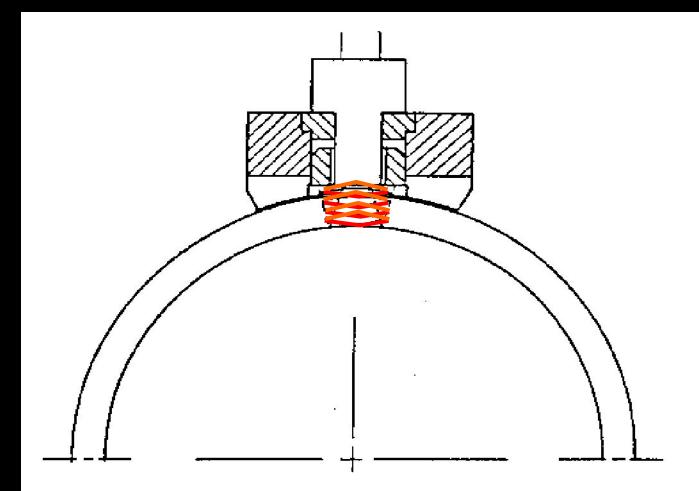
Evaluation Of *TUBE BODY* For Imperfections
 Detects - ID/OD *TUBE BODY* Fatigue Cracking
 Detects - ID/OD *TUBE BODY* Corrosion Pitting
 Detects - *TUBE BODY* Wall Thickness Changes

Ultrasonic End Area Inspection


Shear Wave

Detection Of Fatigue Cracks In Upset Run-out

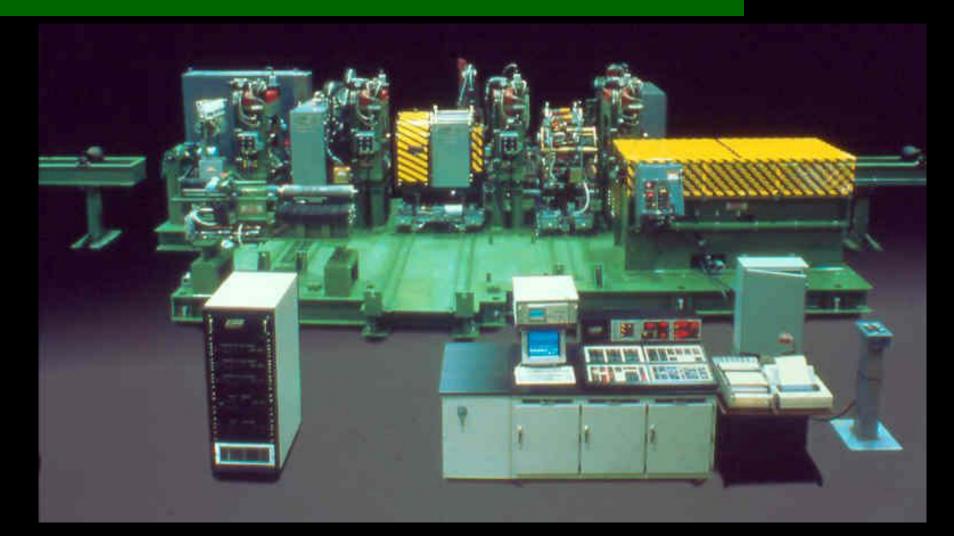
Compression Wave
Detection Of Corrosion Pitting In *Upset Run-out*Detection Of Wall Reduction In *Upset Run-out*



Shear Wave Ultrasonic

Compression Wave Ultrasonic

Benefits Of Ultrasonic End Area Inspection


 Detects Minute O.D./I.D. Fatigue Cracks *Throughout The Upset Run-out Zone* Detects Corrosion Pitting *Throughout The Upset Run-out Zone* Detects Wall Thickness Reduction *Throughout The Upset Run-out Zone*

Reduces Used Drill Pipe Inspection Cost

Capable Of Inspecting Heavy-Wall Drill Pipe

Truscope[®] AS New Non-Tool Jointed Drill Pipe

Your Drill Pipe Management Company

Thank You

Tuboscope would like to express special thanks to both Conoco Inc. and Transocean Offshore Deepwater Drilling Inc. for providing access to the Deepwater Pathfinder Drill Ship.

Tuboscope Drill String Services

Thank You