Organic Chemistry Aromatic Compounds

Arenes:

compounds containing both aliphatic and aromatic parts.

- Alkylbenzenes
- Alkenylbenzenes
- Alkynylbenzenes
- Etc.

Emphasis on the effect that one part has on the chemistry of the other half.

Reactivity & orientation

Aromatic Hydrocarbons

Aliphatic compounds: open-chain compounds and ring compounds that are chemically similar to open-chain compounds. Alkanes, alkenes, alkynes, dienes, alicyclics, etc.

Aromatic compounds: unsaturated ring compounds that are far more stable than they should be and resist the addition reactions typical of unsaturated aliphatic compounds. Benzene and related compounds.

Nomenclature – common names

Nomenclature – common names

Systematic Nomenclature

- Monosubstituted benzenes
- Hydrocarbon with *benzene as parent*
- $C_6H_5Br = bromobenzene$
- $C_6H_5NO_2 =$ nitrobenzene
- $C_6H_5CH_2CH_2CH_3 = propylbenzene$

others named as "alkylbenzenes":

o-diethylbenzene

n-butylbenzene

The Phenyl Group

- When a benzene ring is a substituent, the term phenyl is used (for C₆H₅[±])
- You may also see "Ph" or " ϕ " in place of "C₆H₅"
- "**Benzyl**" refers to " $C_6 H_5 C H_2^{\pm}$

Use of phenyl $C_6H_5 = "phenyl"$

2-methyl-3-phenylheptane

1,2-diphenylethane

do not confuse phenyl (C_6H_5 -) with benzyl ($C_6H_5CH_5$ -)

Nomenclature: Side Chains

If side chain has < 6 carbons
 Alkyl benzene

If side chain has > 6 carbons
 – Phenyl alkane

Alkenylbenzenes, nomenclature:

Special name

Rest are named as substituted alkenes

3-phenylpropene (allylbenzene)

Alkynylbenzenes, nomenclature:

phenylacetylene

phenylethyne

5-phenyl-2-hexyne

Alcohols, etc., nomenclature:

1-phenylethanol

a-phenylethyl alcohol

benzyl alcohol

CH₂CH₂-Cl

1-chloro-2-phenylethane

cyclohexylbenzene

phenylcyclohexane

Nomenclature Disubstituted Benzene

Relative positions on a benzene ring *ortho- (o)* on adjacent carbons (1,2) *meta- (m)* separated by one carbon (1,3) *para- (p)* separated by two carbons (1,4)

Describes reaction patterns ("occurs at the

Nomenclature More Than Two Substituents

- Choose numbers to get lowest possible values
- List substituents alphabetically with hyphenated numbers
- Common names, such as "toluene" can serve as root name (as in TNT)

- Three double bonds
- Unreactive towards normal reagents (compare to alkenes)
- Very stable
- Why?
- How can we get benzene to react?
- Can we control these reactions?

Observations: Reactions of Benzene

- Benzene reacts slowly with Br₂
- Product is bromobenzene
- Substitution Product
- Addition products are not observed.

Stability of Benzene

- KMnO₄
 - Reacts with alkenes
 - No reaction with benzene
- HCl
 - Reacts with alkenes
 - No reaction with benzene
- HBr
 - Reacts with alkenes
 - No reaction with benzene

Stability of Benzene

Heat of Hydrogenation data

C-C bond length

- Electrostatic potential
- Electron density at C is the same

planar

• August Kekule proposed:

1,3,5-cyclohexatriene structureExplained single monobromo product

• Dibromobenzene

Issue was resolved by Kekule

- Explains the observed products
- Does not explain
 - Unreactive nature of benzene
 - Observation of only substitution products
- A triene
 - As reactive as any alkene
 - Would give addition products
 - Not expected to be more stable

Resonance Hybrid

- Not
- Never
- -6.023 X 10²³ points

Stability of Benzene

- MO Description
- 6 p atomic orbitals combine in cyclic manner
- Generate 6 molecular orbitals

Key Ideas on Benzene

- Unusually stable
- heat of hydrogenation 150 kJ/mol lower than a cyclic triene
- Planar hexagon:
- bond angles are 120°
- carbon–carbon bond lengths 139 pm
- Undergoes substitution not addition
- Resonance hybrid
- One more important factor is the number of electrons in the cyclic orbital

Aromaticity

• E Huckel (1931)

- Aromaticity is a property of certain molecules
- Chemistry would be similar to benzene
- Meet the following criteria
 - Planar
 - Mono cyclic system
 - Conjugated pi system
 - Contains 4n + 2 п electrons
- Can apply rules to variety of compounds and determine aromatic nature.
- Led to wild chase to make compounds
 - Met the rules
 - Violated the rules

Aromaticity and the 4n + 2 Rule

- Huckel's rule, based on calculations a planar cyclic molecule with alternating double and single bonds has aromatic stability if it has *4n+ 2 π electrons (n is 0,1,2,3,4*)
- For n=1: 4n+2 = 6

benzene is stable and the electrons are delocalized

Compounds With 4n п Electrons Are Not Aromatic (May be Anti-aromatic)

- Planar, cyclic molecules with *4 п п* electrons are much *less* stable than expected (anti-aromatic)
- They will distort out of plane and behave like ordinary alkenes
- 4- and 8-electron compounds are not delocalized
- Alternating single and double bonds

Cyclobutadiene

 Cyclobutadiene is so unstable that it dimerizes by a self-Diels-Alder reaction at low temperature

Cyclooctatetraene

- Cyclooctatetraene has four double bonds
- Behaves as if it were 4 separate alkenes
- It reacts with Br₂, KMnO₄, and HCl
- Non-planar structure

Aromatic Heterocycles

- Heterocyclic compounds contain elements other than carbon in a ring, such as N,S,O,P
- There are many heterocyclic aromatic compounds
- Cyclic compounds that contain only carbon are called carbocycles
- Nomenclature is specialized
- Four are important in biological chemistry

Pyridine

- A six-membered heterocycle with a nitrogen atom in its ring
- п electron structure resembles benzene (6 electrons)
- The nitrogen lone pair electrons are not part of the aromatic system (perpendicular orbital)
- Pyridine is a relatively weak base compared to normal amines but protonation does not affect aromaticity

Pyrrole

- A five-membered heterocycle with one nitrogen
- Four *sp*²-hybridized carbons with 4 *p* orbitals perpendicular to the ring and 4 p electrons
- Nitrogen atom is *sp*²-hybridized, and lone pair of electrons occupies a *p* orbital (6 п electrons)
- Since lone pair electrons are in the aromatic ring, protonation destroys aromaticity, making pyrrole a very weak

Pyrimidine

- Similar to benzene
- 3 pi bonds
- 4n + 2 pi electrons
- aromatic

Imidazole

- Similar to pyrrole
- Pair of non-bonding electrons on N used
- 4n + 2 pi electrons

Thiophene and Furan

- Non-bonding electrons are used
- 4n + 2 pi electrons

Substitution Reactions of Benzene

- Benzene is aromatic: a cyclic conjugated compound with 6 п electrons
- Reaction with E⁺ Leads to Substitution
- Aromaticity of Benzene is retained

Aromatic Substitutions

- The proposed mechanism for the reaction of benzene with electrophiles involves a cationic intermediate
- first proposed by G. W. Wheland of the University of Chicago
- Often called the Wheland intermediate

Chemistry of the Intermediate

- Loss of a proton leads to rearomatization and substitution
- Loss of E⁺ returns to starting material

Halogenation

- Add Cl, Br, and I
- Must use Lewis acid catalyst
- F is too reactive and gives very low yields

Biological Halogenation

- Accomplished during biosynthesis of
- thyroxine

Aromatic Nitration

- The combination of nitric acid and sulfuric acid produces NO₂⁺ (nitronium ion)
- The reaction with benzene produces nitrobenzene

Nitrobenzenes: Precursors to Anilines

- Nitric acid destroys alkenes through [O]
- In sulfuric acid reacts with benzene giving nitrobenzene
- Nitrobenzene may be reduced to aniline
- Aniline useful precursors to many industrially important organic compounds

Important Anilines

Aromatic Dyes

- William Henry Perkin
- Age 17 (1856)
- Undergraduate student in medicine
- Reacted aniline with potassium dichromate
- Tarry mess

Aromatic Dyes

- Mauve a purple color
- Dyed white cloth
- Patented material and process
- First chemical company

Mauveines -> 1994 !

Some Aniline Chemistry

 Anilines readily react with nitrous acid

- Diazonium salts
 Coupling reaction
 - giving an azo compound
- Dyes and sulfa drugs

Aniline Chemistry

How do we make sulfuric acid?

- H₂SO₄ least expensive manufactured chemical
- S (mined pure) + O_2 SO₃ • SO₃ + H₂O H₂SO₄
- Continue adding SO₃ gives

Fuming sulfuric acid: H₂SO₄/SO₃

Aromatic Sulfonation

- Substitution of H by SO₃ (sulfonation)
- Reaction with a mixture of sulfuric acid and SO₃
- Reactive species is sulfur trioxide or its conjugate acid
- Reaction occurs via Wheland intermediate and is reversible

Benzene Sulfonic Acid

- Manufacture of Ion Exchange Resins
 - Water softening
 - Water purification
 - Environmental restoration (removal of toxic metal ions)

Benzene Sulfonic Acid

- Starting material for Sulfa Drugs
- First useful antibiotics

Hydroxylation

- Direct hydroxylation is difficult in lab
- Indirect method uses sulfonic acid

Biological Hydroxylation

- Frequently conducted
- Example,

Coenzyme necessary

Alkylation of Aromatic Rings The Friedel–Crafts Reaction

- Aromatic substitution of a R⁺ for H
- Aluminum chloride promotes the formation of the carbocation
- Wheland intermediate forms

Limitations of the Friedel-Crafts Alkylation

- Only *alkyl* halides can be used (F, Cl, I, Br)
- Aryl halides and vinylic halides do not react (their carbocations are too hard to form)
- Will not work with rings containing an amino group substituent or a strongly electron-withdrawing group

Limitations

Multiple alkylations occur because the first alkyl group activates the ring

polyalkylation

The alkyl group activates the ring making the products more reactive that the reactants leading to polyalkylation. Use of excess aromatic compound minimizes polyalkylation in the lab.

Limitations

- Carbocation Rearrangements During Alkylation
- Similar to those that occur during electrophilic additions to alkenes
- Can involve H or alkyl shifts

Related Reactions

Chloromethylation

Related Reaction

- Acylation of Aromatic Rings
- Reaction of an acid chloride (RCOCl) with an aromatic ring in the presence of AlCl₃ introduces the **acyl group**,
- _COR
- Benzene with acetyl chloride yields acetophenone
- Acyl group deactivates ring
- Reaction stops after one group is added

Biological Alkylations

- Common reaction
- No AlCl₃ present
- Utilizes an organodiphosphate
- Dissociation is facilitated by Mg⁺²
- Important reaction in biosynthesis of Vitamin K₁

Ring Substitution Effects

- Activation and deactivation of ring
 - Alkyl activates the ring
 - Acyl deactivates the ring
- Activating Groups
 - group promotes substitution faster than benzene
- Deactivating Groups

group promotes substitution slower than benzene

Activating and Deactivating Groups

- Activating groups
 - electron donating groups
 - stabilizes the carbocation intermediate
 - activates through induction or resonance
- Deactivating groups
 - electron withdrawing groups
 - destabilizes the carbocation intermediate
 - deactivates through induction or resonance

Common substituent groups and their effect on EAS:

Activating and Deactivating Groups

Origins of Substituent Effects

- Inductive effect withdrawal or donation of electrons through a σ bond
- Resonance effect withdrawal or donation of electrons through a π bond due to the overlap of a *p* orbital on the substituent with a *p* orbital on the aromatic ring

Inductive Effects

- Controlled by electronegativity and the polarity of bonds in functional groups
- Halogens, C=O, CN, and NO₂ withdraw electrons through σ bond connected to ring
- Alkyl groups *donate* electrons through σ bond

Alkyl group; inductively electron-donating

(X = F, Cl, Br, I)

The groups attached to the aromatic rings are inductively electronwithdrawing because of the polarity of their bonds. © 2004 Thomson/Brooks Cole
Resonance Effects: Electron Withdrawal

- C=O, CN, NO₂ substituents withdraw electrons from the aromatic ring by resonance
- п electrons flow from the rings toward the substituent

Rings substituted by a group with an electron-withdrawing resonance effect have this general structure. © 2004 Thomson/Brooks Cole

Resonance Effects: Electron Donation

 Halogen, OH, alkoxyl (OR), and amino substituents *donate* electrons through resonance

OH

OR

п electrons flow from into the ring

x = Halogen

Rings substituted by a group with an electron-donating resonance effect have this general structure.

© 2004 Thomson/Brooks Cole

NHa

Consider the following data

Analysis of Data

- Methoxy and Methyl
- Activating
- Ortho and para products
- Nitro and Carbomethoxy
- Deactivating
- Meta product
- Bromine
- Deactivating
- Ortho and para products

Ring Effects - Conclusions

- Activating groups
- Substitution is faster than for benzene
- Groups direct substitution to o/p positions
- Deactivating Groups
- Substitution is slower than for benzene
- Groups direct substitution to m position
- Halogens
- Deactivate ring
- Substitution is slower than for benzene
- Groups direct substitution to o/p positions

Ring Effects – The Explanation

© 2004 Thomson/Brooks Cole

- Activating groups donate electrons to the ring, stabilizing the Wheland intermediate (carbocation)
- Deactivating groups withdraw electrons from the ring, destabilizing the Wheland intermediate

Important

You need to know this:

Oxidation of Benzene

- Toluene is readily oxidized by reagents
- Benzene is inert to oxidizing agents
 - Benzene is toxic to humans
 - Benzene is a suspected carcinogen
- Cytochrom P
 - strong oxidant in Liver
 - Primary detoxification process used

Proposed Chemistry

Biological Oxidations of Side Chains

Biosynthesis of norepinephrine

enzyme = dopamine-beta-monooxygenase

Oxidation of Aromatic Compounds

- Alkyl side chains can be oxidized to __CO₂H by strong reagents such as KMnO₄ and Na₂Cr₂O₇ if they have a C-H next to the ring
- Converts an alkylbenzene into a benzoic acid, Ar $-R \rightarrow Ar -CO_2H$

Bromination of Alkylbenzene Side Chains

 Reaction of an alkylbenzene with N-bromo-succinimide (NBS) and benzoyl peroxide (radical initiator) introduces Br into the side chain

Reduction of Aromatic Compounds

- Aromatic rings are inert to catalytic hydrogenation under conditions that reduce alkene double bonds
- Can selectively reduce an alkene double bond in the presence of an aromatic ring
- Reduction of an aromatic ring requires more powerful reducing conditions (high pressure or rhodium catalysts)

Reduction of Aromatic Compounds

 Aromatic Rings can be reduced using Li or Na metal dissolved in liquid ammonia

Reduction of Aryl Alkyl Ketones

- Aromatic ring activates neighboring carbonyl group toward reduction
- Ketone is converted into an alkylbenzene by catalytic hydrogenation over Pd catalyst

