
Object-Oriented Programming and Java
 Part I: Introduction to Concepts and Principles of

Object-Oriented Programming

Course by

Mr. Erkki Mattila, M.Sc.

Rovaniemi University of Applied Sciences

Object-Oriented Programming and Java

Instructor: M.Sc. Erkki Mattila, lecturer

Office: C136

Office hours: according to the weekly schedule
published on the net

Mobile tel.: 040 740 5862

E-mail: erkki.mattila@ramk.fi

OOP, Rovaniemi University of Applied
Sciences

Object-Oriented Programming and Java

COURSE CODE

• 504D24A

DURATION

• 3 CU (+5 CU = 8 CU)

TEACHING

• 40 hours of classes, 40 hours of
self-supervised work (first part)

OOP, Rovaniemi University of Applied
Sciences

Object-Oriented Programming and Java

OBJECTIVES
• The main objective of the first part of the

course is to introduce the basic concepts and
principles of object-oriented programming

• The second part introduces the student to
Java programming (Java SE)

OOP, Rovaniemi University of Applied
Sciences

Object-Oriented Programming and Java

COURSE MATERIAL
• Lecture notes, available at O:\Opettajat\Erkki

Mattila\Object-oriented Programming and Java
504D24A - Part 1

• Budd T. 2002. An Introduction to Object-Oriented
Programming, 3rd Edition. Addison-Wesley Longman

• Sebesta R. W. 2008. Concepts of Programming
Languages, 8th Edition. Pearson Education.
Addison-Wesley

OOP, Rovaniemi University of Applied
Sciences

Object-Oriented Programming and Java

ASSESMENT
• Mid-term exam, which will be graded on a

scale from 1 to 5 and F. 30 percent of the
maximum points are required for grade 1.

• The final exam will be held after the second 5
CU part of the course. The course grade will be
calculated as a weighted average of the
mid-term and final exam grades

OOP, Rovaniemi University of Applied
Sciences

Student level assesment

1. Which programming courses have you participated earlier?
2. How familiar are you with the concepts and principles of

object-oriented programming? You may also answer on a
scale from 0 to 5, zero being not at all and five being master
level?

3. Do you have prior experience of object-oriented
programming languages? If so, which programming
languages/tools have you used?

4. Are you familiar with UML (0-5)?
5. What do you expect/hope to get from this course?

OOP, Rovaniemi University of Applied
Sciences

Course Contents

• Part I: Concepts and Principles of
Object-Oriented Programming

• Part II: Object-oriented Programming
– Closer look at OOP

• Part III: Introduction to Java Programming

OOP, Rovaniemi University of Applied
Sciences

Part I Contents

1. Abstraction
– The concept of abstraction, data and process

abstraction, abstract data types

2. Concepts of Object-Oriented Programming
– Class, object, attribute, method, etc.

3. Principles of Object-oriented Programming
– Data abstraction (encapsulation and information hiding),

inheritance, and polymorphism

OOP, Rovaniemi University of Applied
Sciences

1. Abstraction

Object-oriented Programming Paradigm

• OOP is a common programming paradigm. A
programming paradigm is a way to conceptualize
how to structure a program to solve a problem
– Other programming paradigms include functional

programming, logic programming, imperative
programming and declarative programming

• Common OO programming languages nowadays are
Java, C++ ja C#

• Common OO modelling languages are UML, OMT ja
OMT++. UML is nowadays the de facto standard

OOP, Rovaniemi University of Applied
Sciences 11

C Data Types Revisited

• Which built-in, primitive data types
the C programming language has?

• What are structure types (struct) in C
language?

• What is the relationship between
functions and data in C language?

OOP, Rovaniemi University of Applied
Sciences 12

Definition: Abstract Data Type

• An abstract data type is a data type that
satisfies the following conditions:
– The declarations of the type and (the protocols of) the

operations of the type are contained in a single syntactic
unit (encapsulation)

– Other program units are allowed to create variables of the
type

– The representation of objects of the type is hidden from
other program units. The only direct operations possible
on those objects are those provided in the type’s definition
(information hiding)

Sebesta R.W. 2008. Concepts of Programming Languages , 8th Edtion. Addison Wesley

OOP, Rovaniemi University of Applied
Sciences

Abstract Data Types (ADT)

• ADTs are defined by the user (user-defined type)
• ADTs should provide the same characteristics provided by

language-defined types, such as an integer or a floating point
type:
– A type’s definition that allows program units to declare

variables of the type, but hides the representation of the
objects of the type

– A set of operations for manipulating objects of the type
• In OOP abstract data types are implemented as classes
• An instance of an abstract data type is called an object

OOP, Rovaniemi University of Applied
Sciences

Scope

• A class consists of data fields (attributes) and
operations, which manipulate the data

• The data fields/attributes can be accessed
anywhere inside the class itself; i.e. all
operations of the class have direct access to
class’s data

OOP, Rovaniemi University of Applied
Sciences

Group Work

• Define a new abstract data type
– Name of the type

– Attributes (Data fields)

– Operations

OOP, Rovaniemi University of Applied
Sciences 16

Relation of Abstract Data Types to
Object-oriented Programming

• Object-oriented programming (OOP) is an
outgrowth of the use of ADTs

• Data abstraction is one the most important
components of OOP

• In OOP languages abstract data types are
implemented as classes!

• An instance of a class is called an object!

OOP, Rovaniemi University of Applied
Sciences

2. Concepts of Object-oriented
Programming

Class
� Classes are reusable

software components that
model items in the real
world

� A class encapsulates the
data and procedural
abstractions (operations)
that are required to describe
the content and behaviour
of some real world entity

� A program written in pure
OOP language consists of
classes – there can be no
code outside of classes

� A class is a compile-time
concept

OOP, Rovaniemi University of Applied
Sciences

attributes:

class name

methods:

Object

• An object is an instance of a class

• Objects are created during program execution
– object is a run-time concept

• Multiple objects can be instantiated of the
same class

• Each object has its own values for the instance
variables (attributes) of its class
– These values define the state of the object

OOP, Rovaniemi University of Applied
Sciences

Classes and Objects

OOP, Rovaniemi University of Applied
Sciences

An object is an instance of
a class. It gives specific

values to the fields of the
class

cost
dimensions
weight
location
colour

class: furniture

buy
sell
weigh
move

Cost = 100
Dimensions =
dim
Weight = 50
Location = loc
Colour = blue

object: chair

buy
sell
weigh
move

Attributes

• People have features including date of birth, name,
height and eye colour

• Physical objects have features such as shape, weight,
colour, etc

• Similarly classes have attributes (=fields, member
variables)

• The values assigned to an object’s attributes make
that object unique; they define the state of an object

OOP, Rovaniemi University of Applied
Sciences

Methods

• A class encapsulates data and the algorithms that
process that data. These algorithms are called
methods, operations, functions, routines or services

• Each of the methods provide a representation of one
of the behaviours of the object

– Behaviour = method implementation

• Whenever an object receives a message, it initiates
some behaviour by executing a method

– Message = method call

OOP, Rovaniemi University of Applied
Sciences

Messages (Method Calls)

• Messages are the means by which objects interact. A
message stimulates some behaviour to occur in the
receiving object. The behaviour is accomplished when a
method is called and executed

OOP, Rovaniemi University of Applied
Sciences

Sender
object Receiver

object

sender.method(parameters)

receiver.method(parameters)

Pressman R., p.533

Constructor

• A specialized method used to instantiate an object
• The constructor function has the same name as the

class
• It is never called directly, but the run-time system

calls it when a new object is created
• Constructors are usually overloaded; a class contains

multiple constructors, which have a different set of
parameters

OOP, Rovaniemi University of Applied
Sciences 25

A Class Definition in Java Language

public class Shape

{

 private static int a_numberOfShapes=0;

 private Color a_color;

 public Shape()

 {

 Shape.a_numberOfShapes++;

 a_color = Color.BLACK;

 }

 public Shape(Color c)

 {

 Shape.a_numberOfShapes++;

 a_color = c;

 }
OOP, Rovaniemi University of Applied

Sciences

A Class Definition in Java Language

public class Circle extends Shape // Class header
{
 private int radius ; // Member variable

 public Circle() // Constructor
 {
 radius = 0;
 }

 public Circle(int r, Color c) {
 super(c); // Calling superclass contructor
 radius = r;
 }

 public long calculateArea() // Member function
 {
 return Math.round(Math.PI*radius*radius);
 }
}

OOP, Rovaniemi University of Applied
Sciences 27

Group Work

• Your task is to design an ATM (Automatic Bank
Teller Machine) system
– Which classes (and objects) should the system

contain?

– Which attributes and operations the classes
should have?

OOP, Rovaniemi University of Applied
Sciences

OOP - Rovaniemi University of Applied
Sciences

Class Relationships

1) Generalization (Inheritance)

2) Aggregation
▪ Special case: composition

3) Association
• Dependency and Realization relationships

will be coverered in the Design Methods
course

OOP - Rovaniemi University of Applied
Sciences

Inheritance (“is a”) Relationship

• Classes may be arranged in a class hierarchy where one class
(a superclass) is a generalisation of one or more other classes
(subclasses)

• Generalization: creating a common supertype for a group of
classes
– Dog, Cat, Horse => supertype Animal

• Specialization: creating extended versions of existing classes
or objects. This is also called subtyping. Subclass is a special
case of the superclass
– Animal => subtypes Dog, Cat, Horse

• A subclass inherits the attributes and operations from its
superclass and may add new methods or attributes of its own
– For instance Animal class contains the features common to all animals

OOP - Rovaniemi University of Applied
Sciences

Generalization (Inheritance)
Employee

Programmer

project
progLanguages

Manager

budgetsControlled
dateAppointed

Project Man-r
projects

Dept. Man-r
department

Area Man-r
responsibilities

Group work

• Define a rectangle and a square as classes.

• Can they be modelled with a single class?

• If they are modelled as separate classes, is one a superclass of
the other? Why?

• Start by defining the Rectangle class. Declare attributes and
constructor methods. Initilize attributes in contructors.

– Remember that constructors can be overloaded

– Remember that superclass constructor method can be
called in the subclass using the keyword super

• Add a method for calculating the area of the rectangle

OOP, Rovaniemi University of Applied
Sciences

OOP - Rovaniemi University of Applied
Sciences

Aggregation (“part of“) Relationship
• Shows how classes that are collections are composed of other

classes.
• Models the notion that one object uses another object without

"owning" it and thus is not responsible for its creation or
destruction.

• Similar to the part-of relationship in semantic data models.

Assignment
Credits

Exercises
 #Problems
 Description

Solutions
 Text
 Diagrams

OOP - Rovaniemi University of Applied
Sciences

Composition (“has a “) Relationship

• Composition is a special form of
aggregation describing the
situation where an object
contains a number of other
objects and when the containing
object is deleted, all the
instances of the objects that are
contained disappear

• The contained (member) object
cannot exist without its owning
object and can belong to one
owner only at any given time

Government

Minister

OOP - Rovaniemi University of Applied
Sciences

Composition vs. Aggregation

• Composition is a stricter relationship than
aggregation:

1. Member objects cannot exist without the
containing object.

2. A member object can belong to only one
containing object at a time.

• Example of composition: a minister cannot
exist without a government, and a minister
can be a part of only one government at a
time.

OOP - Rovaniemi University of Applied
Sciences

Association (“uses”) Relationship

• One entity uses another entity
as part of its behavior

• Used when the relationship is
permanent

• In the code level one class has
a member variable of another
class type

Manager

Employee

1

1..*

OOP - Rovaniemi University of Applied
Sciences

Attributes and Associations
• Attributes and associations are exchangeable!

– When the relationship exists between classes in your own class model,
use an association in the UML class diagram

– When the relationship exists between a class in your own class model
and a class from a class library, use an attiribute

Book
-author: Author

 is the same as:

Book Authorauthor

Group Work

• Draw an UML class diagram containing the following classes:
Car, Bicycle, Motorcycle, Steamship, Sailboat, Sail, Train,
Wheel (tyre), Engine, Motorship, Watercraft, Vehicle (means
of transportation), Landvehicle, Road, Railway, Waterway, Seat
(bench).

• Put classes to a class diagram and add some attributes to
them. Do the classes have some common attributes?

• Add appropriate relationships between the classes

– Start by defining the class hierarchy

– Add common features as high as possible in the
inheritance hierarchy

OOP, Rovaniemi University of Applied
Sciences

3. Principles of Object-oriented
Programming

Encapsulation

• A class encapsulates together data
(attributes), methods, constants, and
other related information

• Encapsulation means that all of this
information is packaged under one name
and can be reused as one specification
or program component

OOP, Rovaniemi University of Applied
Sciences

Encapsulation: Example

OOP, Rovaniemi University of Applied
Sciences

 G. Booch, “Object-oriented analysis and design with applications”

Benefits of Encapsulation

• Data structures and the methods that
manipulate them are merged in a single
named entity – the class
– Facilitates component reuse

• Interfaces among encapsulated objects are
simplified. An object that sends a message
need not be concerned with the details of
internal data structures
– Greatly reduces programmer’s memory load

OOP, Rovaniemi University of Applied
Sciences

Data Abstraction and Information Hiding

• DA isolates how a compound data object is
used from the details of how it is constructed
from more primitive data objects
– Consider a class Stack and its operations push and

pop

• The client cares about what services a class
offers, not about class’s internal data
structures or how the services are
implemented

OOP, Rovaniemi University of Applied
Sciences

Data Abstraction and Information Hiding

• Classes normally hide the details of their
implementation from their clients. This is
called information hiding

• Although programmers might know the details
of a class’s implementation, they should not
write code that depends on these details as
the details may later change

OOP, Rovaniemi University of Applied
Sciences

Data Abstraction and Information Hiding

• From the definition of an abstract data type:
– The declarations of the type and the protocols of

the operations on objects of the type, which
provide type’s interface, are contained in a single
syntactic unit

• Data Abstraction (type’s interface) and Encapsulation
(single syntactic unit)

– The representation of objects of the type is hidden
from other program units. The only direct
operations possible on those objects are those
provided in the type’s definition

• Information hiding

OOP, Rovaniemi University of Applied
Sciences

Information Hiding

• A type's internal form is hidden behind a set of
access functions

• Values of the type are created, inspected and
modified only by calls to the access functions

• This allows the implementation of the type to
be changed without requiring any changes
outside the module in which it is defined

OOP, Rovaniemi University of Applied
Sciences

Benefits of Information Hiding

• The internal implementation details of data
and procedures are hidden from the outside
world. This reduces the propagation of side
effects when changes occur

• Preserving the integrity of objects
– Illegal attribute values not allowed

• More on information hiding and using access
specifiers to implement it in the second slide
set

OOP, Rovaniemi University of Applied
Sciences

Inheritance

• Inheritance is a mechanism that enables the
responsibilities of one object to be propagated to
other objects

• In a class hierarchy the attributes and methods of the
superclass are inherited by subclasses that may each
add additional “private” attributes and methods

• Inheritance can also be called as
– Specialization: creating extended versions of existing

classes or objects. This is also called subtyping. Subclass is
a special case of the superclass

– Generalization: creating a common supertype for a group
of classes

OOP, Rovaniemi University of Applied
Sciences

Class Hierarchy

OOP, Rovaniemi University of Applied
Sciences

class: Furniture

class: Chair class: Table class: Desk

class: ArmChair class: RockingChair

Class Hierarchy

• Direct superclass
– Inherited explicitly (one level up hierarchy)

• Indirect superclass
– Inherited two or more levels up hierarchy

• Single inheritance
– Inherits from one direct superclass

• Multiple inheritance
– Inherits from multiple direct superclasses

• C++ supports multiple inheritance, Java does not

OOP, Rovaniemi University of Applied
Sciences

Benefits of Inheritance

• Inheritance occurs throughout all levels of a class
hierarchy. Changes at the higher level are
immediately propagated through a system

• Reuse of components is accomplished directly

OOP, Rovaniemi University of Applied
Sciences

OOP, Rovaniemi University ofApplied
Sciences

52

Group Work
• Consider the following classes:

– Building (properties: address, in use, build year, value,…)
– Apartment (properties: number, size,…)
– Office (business premises, properies: number, size,…)
– Resident (add properties)
– Company (properties: founding year, turnover,…)
– Public Company (publicly listed company, which has its own premises.

Add properties)
– Private Company (unlisted company, which has its own premises. Add

properties)
– Home Business / Company (operates in someone’s home. Add

properties)
– Employee (add properties)

• Define the properties of the classes. Define the public
interface of the classes. Define the relationships among
classes.

Additional Material:
Forms of Inheritance

• Specialization
– The child class is a special case of the parent class

• Specification
– The parent class defines behaviour that is

implemented in the child class, but not in the
parent class

– Used to guarantee that classes maintain a certain
common interface – that is, they implement the
same methods

OOP, Rovaniemi University of Applied
Sciences

Additional Material:
Forms of Inheritance

• Construction
– The child class makes use of the behaviour

provided by the parent class, but is not a subtype
of the parent class

• Generalization
– The child class modifies or overrides some of the

methods of the parent class to create a more
general kind of object

– Bad style. Use only if you cannot modify the
parent class

OOP, Rovaniemi University of Applied
Sciences

Additional Material:
Forms of Inheritance

• Extension
– The child class adds new functionality, but does

not change any inherited behaviour

• Variance
– The child class and parent class are variants of

each other, and the class-subclass relationship is
arbitrary

– Bad style. Declare a common abstract superclass
instead

OOP, Rovaniemi University of Applied
Sciences

Additional Material:
Forms of Inheritance

• Combination
– The child class inherits features from more than

one direct parent class

– Known as multiple inheritance

OOP, Rovaniemi University of Applied
Sciences

Benefits of OOP

• Characteristics of OOP software:
1. Natural

• Instead of programming in terms of an array or region
of memory, you can program using the terminology of
your particular problem

2. Reliable
• The modular nature of objects allows you to make

changes to one part of your program without
affecting other parts

OOP, Rovaniemi University of Applied
Sciences

Benefits of OOP

3. Reusable
• OOP introduces inheritance to allow you to extend

existing classes and polymorphism allows you to write
generic code

4. Maintainable
• To fix a bug, you only need to correct it in one place

5. Extendable
• OOP presents techniques to extend the code:

inheritance, polymorphism and overriding

OOP, Rovaniemi University of Applied
Sciences

Benefits of OOP

6. Timely
• Natural software simplifies design of complex systems

• Multiple developers can work on classes independently
(parallel development)

OOP, Rovaniemi University of Applied
Sciences

