
Course by Mr. Erkki Mattila, M.Sc.
Rovaniemi University of Applied Sciences

Introduction to Object-Oriented
Programming

 Part II: OOP Concepts

Course Contents
⚫ Part I: Object-Oriented Concepts and

Principles
⚫ Part II: Object-oriented Programming
⚫ Closer look at the concepts of OOP

OOP, Rovaniemi University of Applied Sciences2

Member Variables
⚫Variables defined inside a class

are called member variables
⚫Member variables fall into two

categories: instance variables
and class variables (static
variables)

OOP, Rovaniemi University of Applied Sciences3

Instance Variables
⚫ All objects have their own copies of

instance variables
⚫ System allocates memory for

instance variables at object creation
time

⚫ Instance variables can be accessed
only through an instance, for
example
Vector v = new Vector(); int
c=v.elementCount;

⚫ The state of an object is specified by
the values of its instance variablesOOP, Rovaniemi University of Applied Sciences4

Class (Static) Variables
⚫ The runtime system allocates a class

variable once per class, regardless of the
number of instances created of that
class
� All instances of the same class share the same

copy of class variables
⚫ The system allocates memory for a class

variable the first time it encounters the
class (=loads it into memory)

⚫ You can access class variables either
through an instance or through the class
itself
⚫ The latter is better style, for example String s

= Integer.toString(10);
OOP, Rovaniemi University of Applied Sciences5

Example of Instance and Class
Variables in Java

public abstract class Shape
{
 public static int a_numberOfShapes=0;

 private Color a_color;

 public Shape(){
 Shape.a_numberOfShapes++;
 a_color = Color.BLACK;
 }

 public Shape(Color c){
 Shape.a_numberOfShapes++;
 a_color = c;
 }
}

OOP, Rovaniemi University of Applied Sciences6

Methods
⚫ The code that describes how to perform an

operation on a specific object type is called a
method

⚫ In different OOP languages, methods can
also be called as functions or operations, all
meaning the same thing.

⚫ Variables and methods can be called with a
common name class members

⚫ Methods fall into two categories: instance
methods and class methods

OOP, Rovaniemi University of Applied Sciences7

Instance Methods
⚫ Both instance and class members can be

referenced from an instance method
⚫ If no instance name is given when referring to

an instance variable or method, the system
uses the current instance (object
self-reference)

OOP, Rovaniemi University of Applied Sciences8

Class (Static) Methods
⚫ A class method is a static method in some

class.
⚫ It may not access the instance variables or

methods of the class, but only the other
static members of the class

⚫ A static method can access an instance
variable or method only if the instance
(object) name is mentioned before the
variable/method name

OOP, Rovaniemi University of Applied Sciences9

Method Overloading
⚫ Method overloading means having two

methods with the same name in the
same class that differ in the amount
and/or types of their arguments.

⚫ It is not legal to have two methods of
the same name that differ only in their
return types

⚫ Method overloading is not an O-O
feature; it can exist in non-object
languages as well.
⚫ Do not mix with method overriding!

OOP, Rovaniemi University of Applied Sciences10

Example of Method Overloading
public class Rectangle extends Shape
{
 private int width;
 private int height;

 public Rectangle() {
 width=0;
 height=0;
 }
 public Rectangle(int w, int h) {
 width=w;
 height=h;
 }
 public Rectangle(int w, int h, Color c) {
 super(c);
 width=w;
 height=h;
 }
}

OOP, Rovaniemi University of Applied Sciences11

Coercion
⚫ Coercion and overloading often go hand in

hand
⚫ Coercion occurs when an argument of one

type is converted into the expected type
automatically

⚫ Example:
public float add(float a, float b);
int x=1, y=2;
float z = add(x,y);

⚫ When you call add() with int arguments, the
arguments are converted into floats by the
compiler (type cast)

⚫ To avoid coersion another overloaded
method with int type of arguments could be
added to the class:
⚫ public int add(int a, int b);

OOP, Rovaniemi University of Applied Sciences12

Exercise
⚫ Look through the Java API. Find an

example of overloading and explain it.

OOP, Rovaniemi University of Applied Sciences13

Variable Shadowing
public class Circle extends Shape
{
 private int radius;

 // Parameter radius shadows member variable radius
 public Circle(int radius) {
 this.radius=radius;
 }

 public Circle(int r, Color circleColor) {
 super(circleColor);
 radius=r;
 }
}

⚫ Shadowing means using the same names for member
variables and method parameters/local variables

⚫ Sometimes used, but better to be avoided

OOP, Rovaniemi University of Applied Sciences14

Naming the Member Variables
⚫ A common way to avoid variable shadowing is

to follow a naming convention for member
variables

⚫ For instance add a prefix to each member
variable:
⚫ m_ as member, or
⚫ a_ as attribute
⚫ The latter one might be better, because letter m

can also be incorrectly associated with the word
method

⚫ Example: private int a_size;
⚫ For local variables and parameters it is then

possible to use the same name without the
prefix

⚫ How could you fix the example on the
previous slide to avoid variable shadowing?

OOP, Rovaniemi University of Applied Sciences15

Variable Shadowing Example
Fixed
⚫Rename member variable radius to

a_radius
⚫ Parameter radius no longer shadows

the member variable

public class Circle extends Shape
{
 private int a_radius;

 public Circle(int radius) {
 a_radius=radius;
 }
}

OOP, Rovaniemi University of Applied Sciences16

Object Self-reference
⚫ In OOP languages, a special keyword is

used to refer to the current instance of
an object
⚫ this in Java, C++ and C#

⚫ Self-reference contains the object type
and the value of the current object
instance

⚫ Self-reference is used to access the
object whenever a reference to it is
needed inside the object
⚫ to access a member variable when shadowed

by local variables
⚫ to pass the object itself as a function

argument
⚫ to add the object itself to a collection
⚫ to call another constructor method in the

same class

OOP, Rovaniemi University of Applied Sciences17

Constructor
⚫ A specialized method used to instantiate an

object
⚫ The constructor function has the same name

as the class. It is never called directly, but the
run-time system calls it when a new object is
created

⚫ Constructors are usually overloaded; a class
contains multiple constructors, which have a
different set of parameters

OOP, Rovaniemi University of Applied Sciences18

Destructor
⚫ Destructor is a specialized method,

which is called when an object is deleted
⚫ Its purpose is to release the resources

the object may have allocated
⚫ Destructor cannot be overloaded and it

cannot have any arguments
⚫ Constructor and destructor methods

can’t be inherited
⚫ When a class is instantiated, the system first

calls the constructor of its superclass and the
superclass’s superclass until it reaches the
root of the inheritance hierarchy

OOP, Rovaniemi University of Applied Sciences19

Constructor Example 1
public class Rectangle extends Shape
{
 private int width;
 private int height;

 public Rectangle() {
 width=0;
 height=0;
 }

 public Rectangle(int w, int h)
 {
 width=w;
 height=h;
 }

 public Rectangle(int w, int h, Color c)
 {
 super(c);
 width=w;
 height=h;
 }
}

OOP, Rovaniemi University of Applied Sciences20

Constructor Example 2
public class TestShape
{
 public void someMethod()
 {
 Color myColor = new Color(100, 170, 15);

 // Call parameterless consructor
 Rectangle r1 = new Rectangle ();

 // Call constructor with two int type of parameters
 Rectangle r2 = new Rectangle(5,8);

 // Call constructor with two int and one Color type of parameters
 Rectangle r3 = new Rectangle(7, 15, myColor);
 }
}

OOP, Rovaniemi University of Applied Sciences21

Method overriding
⚫ Method overriding means providing a

replacement method in a new class for a
method inherited from the base class; i.e.
we give a new implementation for an
inherited superclass method in the subclass

⚫ The replacement method must have
exactly the same name, argument list and
return type as the inherited method

⚫ Overriding occurs when attributes and
methods are inherited in the normal
manner, but are then modified to the
specific needs of the new class

OOP, Rovaniemi University of Applied Sciences22

Example of Method Overriding 1
public abstract class Shape
{
 public static int a_numberOfShapes=0;
 protected Color a_color;

 public Shape(Color c) {
 Shape.a_numberOfShapes++;
 a_color = c;
 }

 public long getArea() { return 0; };

 public abstract long getCircumference();

}

OOP, Rovaniemi University of Applied Sciences23

Example of Method Overriding 2
public class Circle extends Shape
{
 private int a_radius;

 public Circle(int radius, Color circleColor) {
 super(circleColor);
 a_radius=radius;
 }
 public long getCircumference() {
 return Math.round(2* Math.PI*m_radius);
 }
 public long getArea() {
 return Math.round(Math.PI*m_radius*m_radius);
 }
}

OOP, Rovaniemi University of Applied Sciences24

Redefinition
⚫ Occurs when a subclass defines a method

using the same name as a method in the
superclass but with a different type signature

⚫ The change in type signature (parameter list)
is what differentiates redefinition from
overriding

⚫ Two different techniques to resolve the
redefined name: merge model (Java, C#) and
hierarchical model (C++)

⚫ Merge model: all the currently active scopes
are examined to find the best match

⚫ Hierarchical model: scopes are examined one
by one, starting from the subclass scope. If the
name is defined there, the closest match in that
scope will be the one selected

⚫ Redefinition is bad programming style: easy to cause
confusion and errors

OOP, Rovaniemi University of Applied Sciences25

Example of Redefinition
class Parent {
 public void example(int a) {…}
}
class Child extends Parent {
 public void example(int a, int b) {}

⚫ Let’s create an instance of the child and
execute the method with one argument:

Child c = new Child();
c.example(7);

⚫ In Java and C#, the method from the parent
class will be selected

⚫ In C++ the code will produce a compilation
error. Why?

OOP, Rovaniemi University of Applied Sciences26

Variable Hiding
⚫ Within a class, a member variable that has the

same name as a member variable in the
superclass hides the superclass's member
variable

⚫ Within the subclass, the member variable in
the superclass can no longer be referenced by
its simple name
⚫ Instead, the superclass member variable must be

accessed through the super operator (Java, C++)
⚫ Variable hiding is bad programming style
⚫ Easy to cause confusion and errors

⚫ Just because a programming language allows
you to do something, it does not always mean
that it is a desirable thing to do!

OOP, Rovaniemi University of Applied Sciences27

Example of Variable Hiding
class Employee {

 protected int salary;

 protected int hours;

}

class PartTimeEmployee extends Employee {

 protected int salary;

 public void setSalary(int sal) {

 super.salary = sal; // Sets the superclass salary

 }

 public int calculateMonthlySalary() {

 // Uses superclass hours, but subclass salary

 return hours * salary;

 }

}

OOP, Rovaniemi University of Applied Sciences28

Exercise
⚫ Consider the Java API class java.io.Writer
⚫ What kind of examples of method

overriding can you find in the subclasses of
class Writer?

⚫ Find another example of method
overriding in the Java API

OOP, Rovaniemi University of Applied Sciences29

Access Specifiers
(Visibility Identifiers)
⚫ There are three parts in a class, which

have different protection level:
⚫ public part
⚫ protected part
⚫ private part

⚫ An access specier is given to a class and
to all members of the class

⚫ Public variables and methods are visible
to all classes

⚫ Protected members are only visible
inside the class itself and its subclasses

OOP, Rovaniemi University of Applied Sciences30

Access Specifiers
⚫ Private members are only visible inside the

class itself
⚫ Public and protected parts define the class’s

interface to other classes
⚫ Constructor methods must be declared as

public
⚫ Otherwise the class cannot be instantiated as

constructors are always called outside the class
itself

⚫ With the rare exception of singleton pattern

OOP, Rovaniemi University of Applied Sciences31

Access Specifiers

OOP, Rovaniemi University of Applied Sciences32

private
method

public
method

public
variable

private
variable

No access outside
the class

X

X
Access allowed

outside the class

Class members have
access to all other

members of the same
class

Private Data – Public Accessor
methods

⚫ Member variables are usually declared as
private

⚫ Public get and set methods are used to set
and get the variable values

⚫ Advantages of using set and get methods:
⚫ We can give a read-only access to certain data by

specifying only the get method
⚫ We can check for the validity of the data in the set

method, e.g. not allow negative values for person’s
age or height

⚫ We can ensure that required updates are done,
e.g. a field value is updated on the screen as well

⚫ We can change the data structures inside the class,
yet keep its public interface untouched causing no
side-effects outside the classOOP, Rovaniemi University of Applied Sciences33

Checking Parameters for
Validity
⚫ Methods should be made as general as

practical
⚫ Do not set arbitrary restrictions on method

parameters
⚫ Yet most methods have restrictions on what

values may be passed into their parameters
⚫ E.g. no negative values, no null values

⚫ Document clearly all such restrictions
⚫ Check the validity of parameters before the

execution of the method
⚫ If the check fails, exit quickly and cleanly with

an appropriate exception
⚫ Public methods should throw an appropriate

exception (Java: Null Pointer-, IllegalArgument-,
IndexOutOfBounds-, etc.) For non-public methods
use assertions, since you are the author of the package
and therefore responsible for any illegal method callsOOP, Rovaniemi University of Applied Sciences34

Example of Using Access Speciers
with Set and Get Methods
public class Circle extends Shape

{

 private int radius;

 public Circle() {

 radius=0;

 }

 public int getRadius() {

 return radius;

 }

 public void setRadius(int r) {

 if (r >= 0) // Checking validity

 radius = r;

 else

 radius = 0;

 }

}

OOP, Rovaniemi University of Applied Sciences35

Exercise: Access Specifiers - Set
and Get Methods
⚫ Modify the class Shape so that the colour will be

represented with three int type of variables red,
green and blue instead of a single Color type of a
variable. Red, green and blue are integer values
from 0 to 255.

⚫ Make the required mapping between the new and
old data structure in the setColor, getColor and
constructor –methods of class Shape.
⚫ Only change the method implementations, not the

prototypes/signatures
⚫ You can create a new Color type of an object by giving

the integer values as parameters to Color class
constructor
For instance Color newColor = new Color(r, g, b);

⚫ You can get the RGB –values from a Color type of an
object using the methods getRed(), getGreen() and
getBlue().
For instance int green = newColor.getGreen();

⚫ You may also add new set and get methods for
setting and getting the attributes red, green and
blue.

⚫ What changes are needed outside of the class
Shape?

36 OOP, Rovaniemi University of Applied Sciences

Exercise: Checking Parameter Values
for Validity
⚫ Add set and get methods for the

new int type of member variables
red, green and blue in the
modified Shape class

⚫ Check in the set methods that the
parameter value is in the range
from 0 to 255. If it is not, leave the
attribute value unchanged (and
throw an exception or return an error
code)

OOP, Rovaniemi University of Applied Sciences37

Using Protected Instance
Variables
⚫ Advantages
⚫ Subclasses can modify values directly
⚫ Slight increase in performance
⚫ Avoid set/get function call overhead

⚫ Disadvantages
⚫ No validity checking
⚫ subclass can assign illegal value

⚫ Implementation dependent
⚫ subclass methods more likely dependent on

superclass implementation
⚫ superclass implementation changes may result in

subclass modifications
⚫ Fragile (brittle) software

38 OOP, Rovaniemi University of Applied Sciences

Abstract Class
⚫ Abstract methods are methods that are

declared but not yet implemented
⚫ Abstract methods have name, return value

and arguments, but no method body
(implementation)

⚫ Also called as deferred methods, or in C++
pure virtual methods

⚫ Only abstract classes may have abstract
methods; if a class has even one abstract
method the class itself must be declared
as abstract

⚫ An abstract class cannot be instantiated,
but it can be inherited

OOP, Rovaniemi University of Applied Sciences39

Purpose of Abstract Classes
⚫ Allow a programmer to define common

interface for a group of classes
⚫ Allow a programmer to use polymorphic

method calls (late binding)
⚫ For example in a collection of classes

representing geometric shapes, we can define a
method to calculate the area of the shape in each
of the subclasses Circle, Rectangle, Triangle

⚫ Suppose a programmer defines a polymorphic
variable of class Shape that will, at various times,
contain instances of each different shape.
Compiler will permit message getArea() to be
used with this variable only if it can ensure that
the message will be understood by any value that
can be associated with the variable
⚫ Solution is to declare an abstract method getArea() in

the superclass Shape
OOP, Rovaniemi University of Applied Sciences40

Abstract Class vs. Interface
⚫ Besides abstract methods, an abstract class

can contain variable definitions and
method implementations
⚫ Can inherit other abstract classes and

implement interfaces
⚫ An interface can only contain abstract

methods and constant definitions
⚫ ”Pure abstract class”
⚫ Can inherit other interfaces and only them

⚫ Purpose of Interfaces
⚫ Interfaces define and standardize the ways in

which people and systems can interact with
one another

OOP, Rovaniemi University of Applied Sciences41

Polymorphism
⚫ Generally, the ability to appear in

many forms
⚫ In OOP polymorphism refers to a

programming language's ability to
process objects differently
depending on their class

⚫ Polymorphism is a characteristic
that greatly reduces the effort
required to extend an existing OO
systemOOP, Rovaniemi University of Applied Sciences42

Polymorphism in OOP
1. We can refer to a subclass type of an object

with a superclass type of a variable
⚫ The class of the referred object is not known at

compile time
⚫ Responds at run time according to the actual class

of the referred object (late binding)
2. Subclasses can override inherited superclass

methods; we can have several
implementations of the same method in the
class hierarchy

⚫ For example, given a base class Shape,
polymorphism enables the programmer to define
different getArea() method for any number of
derived classes, such as Circle, Rectangle and
Triangle

⚫ No matter what shape an object is, applying the
getArea() method to it will return the correct
results (late binding)

OOP, Rovaniemi University of Applied Sciences43

Polymorphism Example 1

OOP, Rovaniemi University of Applied Sciences

Class: Shape

getArea()

Class: Triangle

getArea()

Class: Rectangle

getArea()

Class: Circle

getArea()

Base class

Derived classes

44

Polymorphism Example 2
⚫ A simple example of polymorphism is the method append

in the Java class StringBuffer
⚫ The argument to this method is declared as Object and

thus can be any object type
⚫ The method has the following definition:
class StringBuffer {
 String append(object value) {
 return append(value.toString());
 }
}
⚫ The method toString is defferred. It is defined in class

Object and redefined in a large number of different
subclasses

⚫ Each of these definitions of toString will have slightly
different effect: a Double will produce a textual
representation of a numeric value; Color will generate a
string that describes the red, green and blue values in the
color, etc.

OOP, Rovaniemi University of Applied Sciences45

Exercises
1. In your own words, explain

polymorphism
2. Consider again the Java API class

java.io.Writer.
⚫ (What kind of examples of method

overriding can you find in the
subclasses of class Writer?)

⚫When programming, you should write
your objects and methods to act on
instances of Writer (instead of
subclass types). Why?

OOP, Rovaniemi University of Applied Sciences46

Late Binding 1
⚫ Dynamic binding of messages (method

calls) to method definitions
⚫ Polymorphism ensures that the proper

version of the method is called based on
the type of the object

⚫ Late binding only applies to instance
methods; this sort of dynamic lookup
does not happen for static/class
methods. Why?

OOP, Rovaniemi University of Applied Sciences47

Late Binding 2
⚫ Actual operations can be bound to messages as

soon as the type of the object receiving the
message is known
⚫ If this is known during the compilation, an early

binding occurs, otherwise the mapping is done on
run-time, late binding occurs

⚫ Early binding is typically more efficient in
terms of hardware resource usage

⚫ Late binding is a mechanism to implement
polymorphism, which is one of the main
principles of OOP
⚫ Reminder: polymorphism - different type of objects

invoke different methods in response to the same
message (method call)

OOP, Rovaniemi University of Applied Sciences48

Virtual Operation
⚫ An operation which late binding

can be applied to is called a virtual
operation

⚫ In Java, all methods are virtual by
default Method overriding can be
prohibited by defining the method
as final

⚫ In C++ all methods are non-virtual
by default. Methods must by
specified as virtual by using the
virtual keyword

OOP, Rovaniemi University of Applied Sciences49

Group Work
⚫ Write down the names of the Shape, Triangle,

Rectangle and Circle classes (see previos slide)
⚫ What kind of attributes the classes should have

(to be able to calculate the area of the shape they
represent)?

⚫ Find common attributes, if any, and move them
to the common base class Shape

⚫ Add an abstract method getArea() to the base class
⚫ Implement the getArea() method in each of the

subclasses. It should return the area of that
particular shape

⚫ Area of a triangle = ½absinC, Area of a circle = ¶r2
⚫ Similarly add method getCircumference() to the

superclass and subclasses
OOP, Rovaniemi University of Applied Sciences50

Group Work
⚫ Add a new subclass for the class Shape, for

instance Parallelogram (area = side1 * side2
* sin(angle))
⚫ Use the functions Math.sin(angle in radians)

and Math.toRadians(angle in degrees)
⚫ Create an instance of the new class in the

Test class and call the
printAreaAndCircumference for it

OOP, Rovaniemi University of Applied Sciences51

Other Forms of Polymorphism
⚫ The type of polymorphism described

earlier is called pure polymorphism or
inclusion polymorphism
⚫ Pure polymorphism occurs when a

polymorphic variable is used as an argument
in a method

⚫ Another type of polymorphism is
parametric polymorphism, which is
implemented in Java as generic classes
and in C++ with template classes

⚫ Method overriding and overloading can
also be considered as types of
polymorphism

OOP, Rovaniemi University of Applied Sciences52

Multiple Inheritance
⚫ Sometimes it is tempting to inherit

some attributes and methods from one
class and others from another class.
This is called multiple inheritance

⚫ Multiple inheritance means having
more than one direct superclass

⚫ Multiple inheritance complicates the
class hierarchy and creates potential
problems in configuration control
(sequences of multiple inheritance are
more difficult to trace)

OOP, Rovaniemi University of Applied Sciences53

Problems with Multiple
Inheritance
• Name ambiguity

– Inherited, different features can have the
same name

– Same feature may be inherited several times

• Impact on substitutability
– Overriding a method that has been inherited

from several superclasses
– deck.draw(), rectangle.draw()

• Many types of tricks invented to
overcome the problems
– Make the program complicated, is it worth

it?OOP, Rovaniemi University of Applied Sciences54

Reference and Value Semantics
⚫ Reference semantics: variable values are

references to objects (Java)
⚫ Assignment x=y causes a pointer copy: both

x and y refer to the same object after the
assignment has been done.

⚫ Value semantics: variable values are the
objects (default in C++)
⚫ Assignment x=y causes all the field values of

object y to be copied to the fields of object x.
Two separate, identical objects exist after the
assigment has been performed

OOP, Rovaniemi University of Applied Sciences55

Reference and Value Semantics
⚫ Pure object languages use reference

semantics
⚫ Value semantic type of copying can be done

with a separate cloning method.

⚫ Hybrid languages (such as C++) contain
a special type for handling object
references: a pointer type
⚫ Assignment xPointer = yPointer causes a

pointer copy: both xPointer and yPointer
refer to the same object after the assigment
has been done.

OOP, Rovaniemi University of Applied Sciences56

Copying Objects
⚫ Pointer copy
⚫ According to reference semantics, creates a new reference to

the same object
⚫ Occurs when assignment operator is applied to pointers in C++, or to object

references in Java

⚫ Shallow copy
⚫ Creates a separate copy of the object
⚫ Pointer or reference members refer to the same objects as

in the original object
⚫ Default behaviour in C++ when assignment operator is applied to object values
⚫ In Java the default clone method produces a shallow copy

⚫ Deep copy
⚫ Creates a separate copy of the object
⚫ The objects referred to by pointer or reference members

are also copied
⚫ In C++ you must define a copy constructor and overload the assignment operator to

enable creating a deep copy of an object
⚫ In Java serialization can be used to create a deep copy of an object

OOP, Rovaniemi University of Applied Sciences57

